This pipeline opens the result of ICAalamelodic.m, lets the user interactively label the components that look like neuronal activity (rather than movement artefacts or noise), sort them by label, plots a final summary for the chosen components, and save the reordered maps and time series.


In [64]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
%matplotlib inline 
import pylab

Open time series


In [2]:
import scipy.io as sio

In [92]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/test7/THDDCGCaMP62/100411series/100411alloncregcdFF20skfintminTSROI.mat

In [97]:
Ua=sio.loadmat(filename)

In [98]:
DT=Ua['Sm']

In [99]:
DT.shape


Out[99]:
(31289, 256)

In [100]:
S1=DT.shape

In [101]:
DTmean=np.zeros(S1)
DTvar=np.zeros(S1)
Var=np.zeros(S1[1])

In [102]:
for i in range(S1[1]):
    DTmean[:,i]=DT[:,i]-np.mean(DT[:,i],0)

In [103]:
for i in range(S1[1]):
    Var[i]=np.sqrt(np.var(DTmean[:,i]))
    DTvar[:,i]=DTmean[:,i]/Var[i]

In [104]:
DTvar.shape


Out[104]:
(31289, 256)

open maps


In [14]:
import nibabel as nb

In [15]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)


/media/test7/THDDCGCaMP62/100411series/100411alloncregcdFF20skfintmin256Smith0_4_60IC.nii

In [16]:
img1 = nb.load(filename2)

In [17]:
data = img1.get_data()

In [18]:
S=data.shape

In [19]:
S


Out[19]:
(79, 63, 36, 256)

Zscore maps


In [20]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])

Transform the maps to have zero mean


In [21]:
for i in range(S[3]):
    Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)

Transform the maps to have unit variance and zscore


In [22]:
for i in range(S[3]):
    Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
    Var[i]=np.sqrt(np.var(Dsq))
    Dvar=Demean[:,:,:,i]/Var[i]
    Dmaps[:,:,:,i]=Dvar-2.5
Dmaps[Dmaps<0]=0

Order ICs by variance


In [23]:
datao=data
Dmapso=Dmaps

In [24]:
plt.plot(Var)


Out[24]:
[<matplotlib.lines.Line2D at 0x7f8905676910>]

Separate maps in substacks, sort the independent components by brain regions


In [68]:
my_cmap=plt.cm.jet
my_cmap.set_bad(alpha=0)
Good_ICs=np.zeros(S[3])
Label_ICs=[]
pylab.rcParams['figure.figsize'] = (13, 2.5)

In [26]:
Dtemp=data[:,:,:,0]

In [27]:
%%javascript
IPython.OutputArea.auto_scroll_threshold =4000;



In [28]:
if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    D1=np.zeros([S[0],S[1],Nstack])
    Dmean=Dtemp[:,:,range(Nstack)]
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        #Dmean[:,:,i]=np.max(Vmean,0)
        Dmean[:,:,i]=Vmean
else:
    Nstack=S[2]
    D1=np.zeros([S[0],S[1],S[2]])
    Dmean=data[:,:,range(S[2])]  
    Dmean=np.squeeze(Dtemp[:,:,:])


/usr/local/lib/python2.7/dist-packages/numpy/lib/shape_base.py:422: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
  sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))

In [29]:
DTvar.shape


Out[29]:
(31289, 256)

In [30]:
S


Out[30]:
(79, 63, 36, 256)

In [31]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/test7/THDDCGCaMP62/100411series/100411seriesXk.mat

In [32]:
Ua=sio.loadmat(filename)
Xk=Ua['Xk']
#Xk[1,:]=Ua['Walk']

In [33]:
Xk.shape


Out[33]:
(31289, 6)

In [37]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenamet = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenamet)
nimt=nb.load(filenamet)
Dtemp=np.squeeze(nimt.get_data())
Dtemp.shape


if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    Dmean=np.zeros([S[0],S[1],Nstack])
    #Dmean=np.squeeze(data[:,:,range(Nstack),2])
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        Dmean[:,:,i]=Vmean

plt.imshow(Vmean,cmap=plt.cm.gray)


/media/test7/THDDCGCaMP62/100411series/MAX_100411seriesdffkf240Smith0_4_60IC.nii
Out[37]:
<matplotlib.image.AxesImage at 0x7f88ff738250>

In [38]:
Xk=Xk.T

In [65]:
Xksmoothed=np.zeros(Xk.shape)

for i in range(Xk.shape[1]):
    Xksmoothed[:,i]=np.mean(Xk[:,max(0,i-999):min(Xk.shape[1],i+1000)],1)


Xkdff=Xk-Xksmoothed

plt.plot(Xksmoothed.T)
plt.show()

plt.plot(Xkdff.T)
TimeCCMax=np.zeros(S[3])



In [66]:
Label_ICs=[]

In [69]:
for j in range(S[3]):

    if S[2]>5:
        for i in range(Nstack):
            V=Dmaps[:,:,Indices[i],j]
            D1[:,:,i]=np.max(V,2)
        D2[:,:,:,j]=D1
        D1[D1==0]=np.nan
           
    else:
        for i in range(S[2]):
            V=Dmaps[:,:,i,j]
            D1[:,:,i]=V 
            

    print(j)
    for i in range(Nstack):
        plt.subplot(1,5,i+1)
        plt.imshow(Dmean[:,:,i],cmap=plt.cm.gray)
        plt.imshow(D1[:,:,i], cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
        
    plt.show()
    
   # plt.plot(TS_ROI[Order[j],:])
    plt.plot(DTvar[:,j])
    plt.plot(Xkdff[0,:]/np.std(Xkdff[0,:]),color=(1,0,0))  
    plt.plot(Xkdff[1,:]/np.std(Xkdff[1,:]),color=(1,0,0))  
    plt.plot(Xkdff[2,:]/np.std(Xkdff[2,:]),color=(1,0,0))  
  
    #plt.plot(Xk[3,:]/np.std(Xk[1,:])+0.5,color=(0,0.5,1))
    CCry=np.correlate(DTvar[:,j],Xkdff[0,:]+Xkdff[1,:]+Xkdff[2,:],'full')
    TimeCCMax[j]=((np.argmax(np.abs(CCry[DTvar.shape[0]-400:DTvar.shape[0]+400])))-400)/100.0
    print(((np.argmax(np.abs(CCry[DTvar.shape[0]-400:DTvar.shape[0]+400]))-400)/100.0))
    plt.show()
    plt.plot(CCry[DTvar.shape[0]-400:DTvar.shape[0]+400])   
    plt.show()

    
    Label_ICs.append(raw_input())
    if Label_ICs[j]=='':
        Good_ICs[j]=0
    else:
        Good_ICs[j]=1


0
0.67
1
1.22
2
1.41
3
1.46
4
0.92
5
1.59
6
2.98
7
-0.42
a
8
0.03
a
9
0.21
a
10
0.1
11
0.08
12
0.09
a
13
0.04
a
14
0.02
a
15
2.87
16
0.07
17
0.05
18
0.22
19
0.03
a
20
0.02
a
21
3.51
22
0.08
a
23
-0.14
a
24
1.45
25
0.04
a
26
0.21
a
27
0.14
a
28
3.52
29
-0.33
30
3.1
a
31
0.2
32
3.51
33
0.2
a
34
0.07
35
-0.34
36
0.14
a
37
0.14
a
38
-0.29
a
39
1.53
40
3.98
41
2.54
42
0.09
a
43
3.11
44
3.18
45
0.05
46
3.86
a
47
0.07
48
0.08
49
0.23
a
50
1.67
51
0.06
a
52
0.13
a
53
0.06
a
54
0.13
55
3.12
a
56
2.64
57
0.28
58
0.09
a
59
-0.4
a
60
0.14
61
1.7
62
-0.21
63
2.98
64
0.08
a
65
-0.34
a
66
0.04
67
0.09
68
2.4
a
69
0.04
70
0.98
71
-0.32
a
72
-0.26
a
73
0.04
74
0.07
75
0.08
76
-0.02
77
0.1
78
-1.11
79
0.03
80
0.07
81
0.1
82
0.05
83
0.22
a
84
0.07
85
-1.54
86
0.09
87
-0.05
a
88
0.18
89
-0.1
90
0.07
91
0.06
92
0.09
93
0.27
a
94
0.07
a
95
0.0
96
0.15
97
2.83
98
0.1
99
1.33
100
0.0
a
101
0.14
a
102
-1.14
103
0.11
104
0.02
105
0.09
106
0.02
a
107
-0.17
108
0.08
109
0.1
a
110
0.0
111
0.38
a
112
0.03
113
0.03
114
0.08
115
0.02
116
0.35
117
-0.52
118
3.41
119
0.99
120
0.03
121
0.24
122
0.05
123
-0.04
a
124
-0.14
125
0.15
126
0.14
a
127
0.73
128
0.02
129
0.83
130
0.15
a
131
0.14
132
0.26
a
133
0.34
134
0.35
a
135
0.1
136
0.29
a
137
0.15
a
138
0.09
139
0.05
140
0.05
141
-0.45
142
0.73
143
0.02
144
0.08
145
0.05
146
0.16
147
0.11
148
-0.09
149
0.01
150
0.06
151
0.14
152
0.0
153
0.16
154
0.02
155
0.15
156
0.12
157
0.1
158
0.02
a
159
0.11
160
0.2
161
0.06
162
0.12
163
0.02
164
0.01
165
0.01
166
1.41
167
0.06
168
0.0
169
-0.8
170
0.03
171
0.06
172
3.55
173
0.06
174
-0.38
a
175
0.23
176
0.21
177
0.29
178
-2.95
179
-2.65
180
0.26
181
-0.52
182
0.03
183
0.03
184
0.03
185
0.06
186
0.6
187
-0.03
188
0.52
a
189
0.0
190
0.05
191
-0.6
192
-3.93
193
1.28
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-69-d4a32672e6de> in <module>()
     42 
     43 
---> 44     Label_ICs.append(raw_input())
     45     if Label_ICs[j]=='':
     46         Good_ICs[j]=0

/usr/local/lib/python2.7/dist-packages/ipykernel/kernelbase.pyc in raw_input(self, prompt)
    687             self._parent_ident,
    688             self._parent_header,
--> 689             password=False,
    690         )
    691 

/usr/local/lib/python2.7/dist-packages/ipykernel/kernelbase.pyc in _input_request(self, prompt, ident, parent, password)
    717             except KeyboardInterrupt:
    718                 # re-raise KeyboardInterrupt, to truncate traceback
--> 719                 raise KeyboardInterrupt
    720             else:
    721                 break

KeyboardInterrupt: 

In [ ]:
#zip(range(S[3]),Label_ICs)

In [ ]:
set(Label_ICs)

In [ ]:
Label_ICs[94]='M'

In [ ]:
Label_ICs[104]='alpha'
Label_ICs[100]='alpha'

Label_ICs[138]='betap'
Label_ICs[94]='betap'
Label_ICs[90]='betap'

Label_ICs[67]='gamma'
Label_ICs[60]='gamma'
Label_ICs[24]='gamma'
Label_ICs[54]='gamma'
Label_ICs[33]='gamma'

In [47]:
Xk=Xk.T

In [48]:
Xksmoothed=np.zeros(Xk.shape)

Xksmoothed[0,:]=np.convolve(Xk[0,999:Xk.shape[1]-1000],np.ones(2000)/2000)

Xksmoothed[1,:]=np.convolve(Xk[1,999:Xk.shape[1]-1000],np.ones(2000)/2000)

Xksmoothed[2,:]=np.convolve(Xk[2,999:Xk.shape[1]-1000],np.ones(2000)/2000)

Xkdff=Xk-Xksmoothed

In [53]:
Rsq=np.zeros((1,S[3]))
Betas=np.zeros((6,S[3]))

In [54]:
from sklearn import linear_model

In [55]:
algorithm = linear_model.LinearRegression()

In [56]:
for j in range(S[3]):
    model = algorithm.fit(Xkdff.T, DT[:,j])
    Betas[:,j] = model.coef_
    Rsq[:,j] = model.score(Xkdff.T,DT[:,j])

In [57]:
max(max(Rsq))


Out[57]:
0.58955431290664939

In [58]:
List1=[(Label_ICs[i],i) for i in range(S[3])]
Newlist=sorted(List1, key=lambda List1: List1[0])

Neworder=[Newlist[i][1] for i in range(S[3])]

NewDT=DTvar[:,Neworder[:]].T

for j in range(len(Neworder)):
    A=NewDT[:,j]
    V=np.sqrt(np.var(A))
    NewDT[:,j]=A/V

C1=np.zeros([16,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
C1[6][:]=(1,0.5,0)
C1[7][:]=(0,1,0.5)
C1[8][:]=(0.5,0,1)
C1[9][:]=(0.8,0.8,0.5)
C1[10][:]=(0.5,1,1)
C1[11][:]=(1,0.5,1)
C1[12]=(0.5,0.5,0.5)
C1[13]=(0.2,0.5,0.5)
C1[14]=(0.5,0.2,0.5)
C1[15]=(0.5,0.5,0.2)
h=3

Newmaps=Dmaps[:,:,:,Neworder[:]]

L=len(set([Label_ICs[Neworder[i]] for i in range(len(Neworder))]))

Regionmaps=np.zeros([S[0],S[1],L,3])
Datasort=np.zeros([S[0],S[1],S[2],L,3])

Regionname=[]

DMapsordered=Dmapso[:,:,:,Neworder[:]]

j=0
i=0
k=Label_ICs[Neworder[0]]
m=0
Regionname.append(Label_ICs[Neworder[i]])
for i in range(len(Neworder)):
    
    #C2=C1[i%6][:]
    for l in range(3):
        M=np.max(np.squeeze(np.reshape(Newmaps[:,:,:,i],S[0]*S[1]*S[2])))
        Regionmaps[:,:,j,l]=Regionmaps[:,:,j,l]+0.6*np.max(DMapsordered[:,:,:,i],2)*C1[i%12+1][l]/M
        Datasort[:,:,:,j,l]=Datasort[:,:,:,j,l]+Dmaps[:,:,:,Neworder[i]]*C1[i%15+1][l] 
    i=i+1
    m=m+1
    if i<len(Neworder):
        k1=Label_ICs[Neworder[i]]
        
        
    if k1 != k:
        j=j+1
        k=k1
        m=0
        Regionname.append(Label_ICs[Neworder[i]])

pylab.rcParams['figure.figsize'] = (14, 5)
import scipy
from scipy import ndimage
j=0
m=0
L=0
k=Label_ICs[Neworder[0]]
for i in range(len(Neworder)):
    m=m+1
    
    
    if i<len(Neworder):
        k1=Label_ICs[Neworder[i]]
        
    if k1 != k:
        
        k=k1
        m=0
        
        plt.show()
        plt.figure(2*j+1)
        Rotated_Plot = ndimage.rotate(Regionmaps[:,:,j], -90)
        IM=plt.imshow(Rotated_Plot) 
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
        j=j+1
        plt.figure(2*j)
        plt.plot(Xk[0,:]/np.std(Xk[0,:])+0.5,color=(1,0,0))   
        plt.plot(Xk[1,:]/np.std(Xk[1,:])+0.5,color=(0,1,0))
        plt.plot(Xk[2,:]/np.std(Xk[1,:])+0.5,color=(0.5,0.5,0))    
        #plt.plot(Xk[3,:]/np.std(Xk[1,:])+0.5,color=(0,0.5,1))
    plt.plot(NewDT[i,:]+h*m,color=C1[i%12+1][:])
    print(Neworder[i])
    print(Rsq[:,Neworder[i]])
    print(Betas[:,Neworder[i]])
plt.figure(2*j+1)
Rotated_Plot = ndimage.rotate(Regionmaps[:,:,j], -90)
IM=plt.imshow(Rotated_Plot)
frame1 = plt.gca()
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
print(Neworder)


0
[ 0.05377291]
[  9.55011695e-04   4.61638892e-04   6.78106391e-06   1.88156222e-05
   2.86618161e-05   1.55268510e-05]
1
[ 0.04291468]
[  2.88815321e-03   1.56206073e-03  -2.28031845e-04   5.52054100e-05
   9.25699278e-05   6.01344872e-05]
2
[ 0.03668773]
[ 0.00760618  0.004867   -0.0010175   0.00018219  0.00032904  0.00024191]
3
[ 0.03802766]
[  3.70135888e-03   1.77350675e-03  -3.26517733e-05   7.23749421e-05
   1.65676169e-04   1.18532428e-04]
4
[ 0.32473324]
[  6.63059561e-05  -2.82019035e-04   2.04481415e-04   6.08561045e-05
   3.81853341e-05  -1.83532112e-05]
5
[ 0.03132458]
[ -2.06062608e-04   1.26561100e-03  -8.20358605e-04  -5.46433423e-05
  -1.03507391e-04  -5.51079252e-05]
6
[ 0.05890307]
[  1.04715766e-04   1.24636127e-04   1.92473613e-06   1.16061176e-05
   3.70179193e-05   3.09841598e-05]
7
[ 0.02520256]
[  1.67153735e-03   1.81922968e-03  -1.15689703e-03  -9.90272942e-06
  -5.72147104e-05   8.77092509e-07]
8
[ 0.57683379]
[  5.10239154e-04   2.04359203e-04   1.43340896e-04   2.80537420e-07
  -1.78094840e-05  -2.03516310e-05]
9
[ 0.49767699]
[  2.24741943e-03   9.22461228e-04   6.77525549e-04   2.87530483e-05
  -3.28809910e-05  -5.07326854e-05]
10
[ 0.04344632]
[ -1.86907431e-03  -4.09255404e-04  -6.30448209e-04   1.46411514e-05
   2.48714156e-05   1.37139381e-05]
11
[ 0.10120093]
[  4.43597852e-03   2.32574889e-03   2.01598904e-04   9.20344042e-05
   9.22400851e-05   6.54545693e-05]
12
[ 0.51412158]
[  3.88732555e-03   7.48213663e-04   1.01676954e-03   2.90208166e-05
  -6.41176796e-05  -7.08841935e-05]
13
[ 0.58955431]
[  8.47133047e-03   9.84722206e-03   1.97400754e-03   9.99180882e-05
  -2.88127280e-04  -3.27153099e-04]
14
[ 0.57829147]
[  3.07715301e-03   2.19963700e-03   1.06109368e-03   2.69060632e-05
  -6.24111496e-05  -8.23126590e-05]
15
[ 0.06637363]
[ -2.88823159e-03  -1.18834747e-03   8.31765828e-04  -4.54171080e-05
  -3.05505099e-04  -2.72046685e-04]
16
[ 0.06585975]
[  2.32514907e-04   1.18209552e-04   4.13635700e-05   2.39410019e-06
   3.78748538e-06   1.34140638e-06]
17
[ 0.34774192]
[  4.08628360e-04   1.83520943e-04   1.29002284e-04   4.87816356e-06
  -5.74773620e-06  -5.42480687e-06]
18
[ 0.02802737]
[  2.55852097e-04   7.31995330e-05   2.67123481e-04  -1.55754988e-05
  -1.82822875e-05  -2.23673244e-05]
19
[ 0.47575494]
[  7.65222718e-04   2.44271786e-04   1.87032884e-04   2.70689897e-07
  -2.24052961e-05  -2.27340725e-05]
21
[ 0.02382044]
[  5.88934485e-05   7.76743780e-05   6.85714420e-05  -1.84455260e-06
   3.49365266e-07   2.46884214e-06]
22
[ 0.45929784]
[  1.87564603e-03   8.31610807e-04   5.38641071e-04   1.73545648e-05
  -4.65552932e-05  -6.37370335e-05]
24
[ 0.05280658]
[ 0.00479239  0.00214368 -0.00066303  0.00044177  0.00052939  0.00043433]
25
[ 0.56452627]
[  3.08422829e-03   2.19553312e-03   9.85685498e-04   4.16208727e-05
  -5.21184183e-05  -6.88145419e-05]
26
[ 0.45346306]
[  4.41888258e-03   3.59468255e-03   2.29818561e-03   6.89179803e-05
  -1.00158858e-04  -1.61226537e-04]
28
[ 0.02837229]
[ -9.30081572e-04  -2.02464645e-03   9.35601942e-04   2.66414265e-05
  -6.86416342e-05   5.96566560e-06]
29
[ 0.05113338]
[  1.37096188e-04   4.55385745e-04   5.05959362e-04  -4.87952966e-05
  -1.00974004e-04  -1.04727750e-04]
30
[ 0.02264541]
[  4.84018370e-04  -1.24344444e-04   1.39136824e-04   5.02202572e-06
  -6.75996493e-06   2.52242304e-06]
31
[ 0.06871092]
[  5.39361617e-04   3.88567714e-04  -5.00315776e-05   1.85118223e-05
   1.70802896e-05   1.44314603e-05]
33
[ 0.0467593]
[ -7.37809438e-04   2.26013682e-04  -1.43640783e-03  -1.60526561e-05
   5.63806911e-05   2.59414803e-05]
34
[ 0.38203569]
[  2.01788886e-03   1.27762476e-03   6.72072908e-04   3.30955813e-05
  -1.75193028e-05  -2.97595337e-05]
35
[ 0.05556736]
[ -8.56535511e-04   6.00750385e-04  -4.61283599e-04   1.59548582e-05
  -4.24367886e-05  -2.57291893e-05]
36
[ 0.43209422]
[ -9.52646807e-04  -3.66382610e-04  -3.18549403e-04  -1.18685098e-05
   1.45299952e-05   2.03180881e-05]
37
[ 0.17525725]
[  4.68893967e-04   2.33513225e-04   4.04950698e-05   1.36343901e-05
   1.22205935e-05   2.76928550e-06]
39
[ 0.03456043]
[ -3.66425403e-04  -3.57402719e-04   4.13154777e-05   9.41600877e-06
   1.46622205e-05   4.33912450e-07]
40
[ 0.02553211]
[ -3.15778850e-03   1.44926109e-03   1.76722439e-04  -8.98057697e-05
  -1.72578819e-05  -1.09307588e-04]
41
[ 0.0312205]
[ -6.24430606e-05  -1.93607793e-04   4.50317439e-04  -1.19889814e-04
  -1.91152337e-04  -1.56369506e-04]
43
[ 0.01258275]
[ -1.76488599e-03  -1.69679633e-04  -1.25212227e-03  -4.10945386e-07
   4.90384420e-05   1.86656913e-06]
44
[ 0.01539615]
[  2.04389870e-05  -1.36218046e-03   1.11953402e-03  -2.74959094e-05
  -7.28619798e-05  -2.82589430e-05]
45
[ 0.19364681]
[  9.28250796e-04   6.17500804e-04   1.73550037e-04   3.09041608e-05
   1.12110438e-05   7.91850954e-06]
46
[ 0.0179548]
[  2.75718310e-04   5.29956530e-04  -3.37005161e-04   7.91962136e-06
   2.25333198e-05   2.59401584e-05]
47
[ 0.20818333]
[  3.97649079e-03   3.01797559e-03   6.69592900e-04   1.01486686e-04
   6.76759122e-05   3.21606535e-05]
48
[ 0.10307475]
[  4.11226087e-04   2.19040489e-04   8.34279029e-05   1.00597246e-05
  -3.86595887e-07  -2.06170089e-06]
49
[ 0.27108034]
[  1.11307259e-03   6.69229557e-04   4.11862950e-04   2.93066068e-05
  -3.66232993e-06  -1.12330478e-06]
50
[ 0.02080574]
[ -1.26332287e-05  -2.36510130e-03   1.90572912e-03  -1.60366895e-04
  -2.09960982e-04  -1.26034897e-04]
51
[ 0.41246042]
[  9.96474515e-04   3.64368702e-04   2.96185546e-04   8.31788566e-06
  -1.33197291e-05  -2.18142770e-05]
52
[ 0.43818196]
[  7.44493156e-04   4.11371952e-04   4.80524320e-04   2.04012901e-05
  -1.95926138e-05  -3.02195422e-05]
53
[ 0.30312503]
[  5.44020615e-04   2.52165983e-04   2.49058288e-04   1.06298150e-05
  -8.39667800e-06  -1.22739866e-05]
54
[ 0.35496673]
[  7.12741153e-03   4.17968786e-03   2.16307263e-03   6.80126965e-06
  -2.55074959e-04  -2.90186727e-04]
56
[ 0.00496735]
[  1.60611507e-05  -1.02731667e-04   5.39679342e-07  -3.89815963e-06
  -3.67069684e-06  -4.45291912e-06]
57
[ 0.03319228]
[-0.00046708  0.00476991 -0.00244524  0.00033107  0.00029302  0.00045748]
58
[ 0.12923916]
[  5.94873384e-04   9.53672254e-05   2.56494555e-04  -5.47683920e-07
  -2.01724069e-05  -1.65510699e-05]
59
[ 0.05385707]
[  1.88578306e-04   2.89202488e-04  -1.26985131e-04   8.57594325e-06
  -5.19457530e-06   2.01959450e-06]
60
[ 0.25108126]
[  1.48539500e-03   4.19247745e-04   5.31635143e-04   1.81993109e-05
  -1.26722183e-05  -1.67700943e-05]
61
[ 0.4026717]
[ -1.69714330e-03   2.07575532e-03  -1.69983310e-03   2.17924087e-05
   2.99013911e-05  -4.00589362e-05]
62
[ 0.03709987]
[  2.24682160e-05  -6.52238249e-05   3.40691590e-04  -6.54031020e-06
  -2.17415932e-05  -2.10459424e-05]
63
[ 0.04850736]
[ -2.71560469e-05  -2.64650886e-06   1.48965435e-05   3.13305812e-06
   8.04908295e-06   6.59123319e-06]
66
[ 0.45443326]
[ -1.06636925e-03  -2.20862145e-04  -3.36441510e-04   5.91383062e-06
   2.37965130e-05   3.14757780e-05]
67
[ 0.43523069]
[ -8.47496554e-04  -4.33516075e-04  -1.80573961e-04  -1.20171283e-05
   6.26343761e-06   1.27576016e-05]
68
[ 0.01998632]
[ -1.22264875e-03   2.45087057e-04  -3.75190638e-04  -8.72473864e-06
  -3.26245829e-05  -1.54989607e-05]
69
[ 0.08401745]
[  6.75153737e-04   3.01066742e-05   1.20352704e-04  -1.94135404e-06
  -6.53803349e-06  -1.80088732e-05]
70
[ 0.28105488]
[ -6.61907033e-04  -4.55555906e-04   8.70611023e-04   5.60144715e-05
   3.05380278e-05  -2.35329068e-05]
73
[ 0.02611701]
[  4.24997328e-04   4.72687312e-04   2.33888237e-04   2.47267410e-05
   1.90071136e-05   2.25305057e-05]
74
[ 0.35746285]
[ -3.44007729e-03  -1.77384086e-03  -1.38573213e-03  -1.21664213e-04
   1.72898088e-05   6.20210863e-05]
75
[ 0.27721958]
[  2.17324899e-03   8.26979813e-04   4.00329542e-04   2.72754915e-05
  -3.48819052e-05  -5.54513370e-05]
76
[ 0.068106]
[ -7.29782299e-04  -3.80851000e-04  -5.69088374e-05  -6.02444663e-06
  -4.46647047e-06  -3.97111700e-07]
77
[ 0.4134509]
[  4.34489096e-04   1.64553447e-04   8.76974157e-05   2.24801377e-06
  -6.66605568e-06  -6.39603631e-06]
78
[ 0.09770113]
[  9.32933145e-04  -1.46534182e-03   1.79089192e-04   1.85584434e-04
   1.09631715e-04   6.25557366e-05]
79
[ 0.23410024]
[  7.36462076e-04   3.68035239e-04   3.00457518e-04   1.47225441e-05
  -1.68246172e-05  -2.59744875e-05]
80
[ 0.42225673]
[  9.70525265e-04   5.19647924e-04   2.78779751e-04   1.40301188e-06
  -2.55875369e-05  -3.16870105e-05]
81
[ 0.23675963]
[  4.40356182e-04   2.25129266e-04   2.16375533e-04   4.84767563e-06
  -3.03784935e-06  -7.79308094e-06]
82
[ 0.1389156]
[ -5.55995431e-04  -2.17773767e-04  -2.82340956e-04  -6.36779364e-06
   2.10291339e-05   2.07775832e-05]
83
[ 0.29738657]
[  1.97067679e-03   6.82394864e-04   6.45490972e-04   3.72365125e-05
  -7.04004040e-05  -7.05934763e-05]
84
[ 0.14643481]
[ -4.48994216e-04  -2.54570243e-04  -1.04377721e-04  -5.29136251e-06
   2.27600547e-07   1.59830593e-06]
85
[ 0.10726588]
[  9.80140627e-04   4.95092472e-04   1.60756758e-05  -4.27131639e-05
  -7.52655736e-06   2.19062894e-05]
86
[ 0.32236614]
[  8.08791768e-04  -8.80873415e-05   7.47099588e-04  -3.16699065e-06
  -8.50548292e-05  -9.92166185e-05]
87
[ 0.17770437]
[  1.16143423e-03   6.64149447e-04   1.72092260e-04  -5.80777607e-06
  -3.06202244e-05  -3.75614586e-05]
88
[ 0.0565782]
[  2.47141706e-04   1.22167711e-04   1.31294727e-04  -2.07377289e-06
  -6.19557933e-06  -7.61850365e-06]
89
[ 0.20314971]
[ -3.76338675e-04  -2.28990632e-04  -1.06469579e-05  -7.81391927e-06
   5.11009776e-06   3.09953034e-06]
90
[ 0.02912349]
[  8.64811912e-04   7.64143860e-04   8.08857346e-04  -2.03544744e-05
  -2.14668438e-06  -1.31009150e-05]
91
[ 0.06273546]
[ -8.93005787e-04  -2.82654185e-04  -1.07788449e-04   6.05310388e-06
   5.06481010e-06   2.08070766e-05]
92
[ 0.09106025]
[  2.29535629e-04   7.27535736e-05   7.12804447e-06   9.93733968e-06
  -8.55044663e-06  -1.36184703e-05]
94
[ 0.1840743]
[  1.05595170e-03   4.26863944e-04   7.01858622e-04   1.08934196e-05
  -6.20676530e-05  -6.35652326e-05]
95
[ 0.11664662]
[  1.70501466e-03   1.23720291e-03   1.75559807e-04   3.15353554e-05
   1.28479007e-05   4.97840518e-06]
96
[ 0.21451241]
[  2.95200831e-04   1.24755464e-04   9.70817648e-05   5.08135286e-06
  -1.83970174e-06  -3.51499481e-06]
97
[ 0.04214795]
[ -3.47693020e-04  -2.74810703e-04   2.72411129e-04  -2.45992397e-05
  -4.98860093e-05  -4.44639959e-05]
98
[ 0.02552284]
[  1.32883359e-04   1.50336959e-04   1.00281241e-04   3.07124876e-06
   5.63774685e-06   3.58946273e-06]
99
[ 0.04543825]
[  1.47645612e-03   4.09127661e-04  -8.08655863e-05   1.97681130e-05
   3.54765638e-05   1.93084192e-05]
100
[ 0.06436902]
[  1.86566415e-04   1.22836489e-04   4.66100896e-05   1.39578400e-07
  -1.09974889e-05  -8.74978034e-06]
102
[ 0.02553161]
[ -5.49205271e-06  -1.39793203e-04   1.00554921e-04  -7.46284367e-06
   2.27655593e-06   3.38460448e-07]
103
[ 0.28010619]
[  4.83529461e-04   1.67831949e-04   1.87761020e-04  -2.85529637e-06
  -2.10382560e-05  -1.93976661e-05]
104
[ 0.14856231]
[ -8.06433251e-05  -4.07474859e-05  -4.99576858e-05   1.81909942e-06
   4.20923654e-06   7.43310518e-06]
105
[ 0.06539326]
[  1.87976910e-04   2.28584470e-04   8.27572201e-05   6.69033290e-06
   1.14452441e-05   2.01853187e-06]
106
[ 0.11553169]
[  3.29488283e-03   2.76178771e-04   4.30491331e-04   1.46076580e-05
  -4.09455434e-05  -3.72460792e-05]
107
[ 0.11878128]
[ -1.14470548e-03  -3.53756746e-04  -3.88211294e-04  -1.29516038e-05
   3.53928957e-05   2.58717229e-05]
108
[ 0.36484472]
[  3.51721239e-04   1.51583162e-04   9.17472999e-05   3.83660859e-06
  -2.04175695e-06  -4.26602038e-06]
109
[ 0.09883225]
[  2.84362409e-04   1.56823177e-04  -6.34017094e-04  -1.93399987e-07
   6.89890099e-05   5.99934220e-05]
110
[ 0.12390034]
[  7.90472910e-04   3.83560629e-04   1.41558971e-04   8.74807121e-06
  -5.46166144e-06  -6.69283444e-06]
111
[ 0.07477989]
[  1.86107656e-03   3.20717497e-04  -3.50434717e-04   4.12912735e-05
   8.82903685e-05   1.31008961e-05]
112
[ 0.05312498]
[  3.66227098e-03   1.88429482e-03   2.16587256e-04   1.98803138e-05
   6.78234012e-05   3.53163617e-05]
113
[ 0.03945644]
[  1.84643283e-04   7.87726330e-06   2.48025010e-06  -4.63760590e-06
  -6.80163589e-06  -1.45684630e-05]
114
[ 0.15096927]
[  2.36429889e-04   1.26418358e-04   4.37425619e-05   8.43603270e-06
   2.71538782e-06   3.26904282e-06]
115
[ 0.0483128]
[ -4.21576857e-04  -1.26067160e-04  -3.03679523e-04  -1.30773748e-05
   6.61779443e-07   1.87522095e-06]
116
[ 0.22137749]
[  1.55000264e-04   3.87139178e-04  -4.16686037e-05   1.52552965e-05
   5.21888557e-06   5.09473937e-06]
117
[ 0.02381136]
[ 0.02320167  0.00653852  0.0100465  -0.00046484 -0.00074141 -0.00021094]
118
[ 0.04274483]
[  2.81979991e-04   8.58451324e-05  -1.51996392e-05   3.12422430e-06
  -1.77278760e-05  -1.32142791e-05]
119
[ 0.19142345]
[ -6.73733227e-03   5.42194390e-03  -3.99439418e-03  -8.90947521e-05
  -1.03041283e-04  -4.08667541e-05]
120
[ 0.07439485]
[ -4.37590427e-06  -8.64971566e-05  -8.38634504e-05   1.65135350e-07
   2.10417008e-06   6.58907038e-06]
121
[ 0.1637596]
[  7.95720033e-04   3.59034779e-04   2.96403098e-04   1.43091309e-05
   4.73650980e-06  -1.29419631e-06]
122
[ 0.06125992]
[  3.69021860e-04   2.47128368e-04   8.26177902e-05   4.72070593e-06
  -7.65711488e-07   8.66667462e-07]
123
[ 0.0687213]
[ -1.72702705e-03  -1.40352615e-03  -9.41792469e-04  -4.39221235e-05
   6.27686203e-05   6.58828382e-05]
124
[ 0.01301543]
[  7.59471415e-05   1.27238259e-04  -5.91829860e-05   6.57140624e-06
   4.80349808e-06   5.29359428e-06]
125
[ 0.22452033]
[ -6.76173489e-04  -3.72687800e-04  -1.44497660e-04  -1.57712801e-05
  -6.18609105e-06   4.92743592e-07]
126
[ 0.28529722]
[  6.01306577e-04   4.75943390e-04   3.50984314e-04   1.75236608e-05
  -6.40949775e-06  -4.32688996e-06]
127
[ 0.12374282]
[  2.75579960e-04   1.71183497e-04   1.34286851e-04   8.93817826e-06
   6.51722151e-06  -2.95118644e-07]
128
[ 0.24974317]
[  8.60237357e-04   4.28529137e-04   2.85372404e-04   1.05542997e-05
  -1.07521060e-05  -8.13894142e-06]
129
[ 0.02508456]
[  9.34632427e-05   1.09877330e-04   3.52923677e-05   2.87337404e-06
   5.61119837e-06   4.25467641e-06]
131
[ 0.10546058]
[  6.86270459e-04   3.50115139e-04   1.62204069e-04   7.18148088e-06
   1.89386926e-06  -2.53246904e-06]
132
[ 0.15940928]
[ -8.23219987e-04  -7.48263435e-04  -1.66968953e-04  -4.17353351e-06
   2.29041000e-05   1.60995665e-05]
133
[ 0.04677013]
[  1.12960646e-04   2.43083824e-04   2.46002508e-04  -2.51644407e-06
  -2.02659818e-06  -1.02139088e-05]
135
[ 0.49243308]
[  5.79207276e-04   2.71323348e-04   2.83941478e-04   6.41651839e-06
  -1.39485824e-05  -2.18633858e-05]
136
[ 0.30002441]
[  2.69349361e-04   1.43666048e-04   1.45052865e-04   2.33065990e-05
   7.07491015e-07  -1.49441485e-06]
137
[ 0.15754099]
[  1.07385281e-03   4.95599692e-04   3.06588477e-04   1.07685499e-05
  -1.51932564e-05  -1.74139861e-06]
138
[ 0.10481615]
[ -1.32453012e-04  -4.59328869e-05  -8.37624444e-05  -4.69856031e-06
   3.54272549e-06   8.42920302e-06]
139
[ 0.20344613]
[ -1.34707776e-04  -1.11848553e-04  -9.74248147e-05  -1.58078006e-06
   2.20135196e-06   1.02704114e-05]
140
[ 0.24217971]
[ -1.12331047e-03  -3.95839337e-04  -6.26909662e-05  -1.47414997e-05
   3.31190800e-06   3.14239124e-06]
141
[ 0.04216727]
[ -6.97705063e-03  -2.53144851e-03  -1.12749861e-04   2.33903673e-05
   1.16439802e-04   3.27229797e-05]
142
[ 0.28016706]
[  6.13161824e-04   3.99814265e-04   1.87488629e-04   2.11030042e-05
   1.22062065e-05   2.89625309e-07]
143
[ 0.14745904]
[  3.24634310e-04   1.75756219e-04   7.40109102e-04  -8.89219377e-06
  -7.80282262e-05  -7.22403549e-05]
144
[ 0.21479123]
[  2.89049120e-04   5.89571814e-05   8.35945343e-05   1.97995849e-06
  -5.29411763e-06  -4.92531744e-06]
145
[ 0.12019734]
[  2.24815679e-04   7.02753831e-05   9.33498979e-05  -6.47869369e-06
  -2.20198627e-05  -2.22903999e-05]
146
[ 0.31318185]
[ -1.34616320e-03  -7.75547943e-04  -2.06419900e-04  -2.33134606e-05
  -3.59356866e-06   5.25066913e-06]
147
[ 0.03910187]
[  2.48911799e-04   1.08495201e-04   2.58586109e-04   9.71152055e-06
  -6.21643393e-06  -7.58199761e-06]
148
[ 0.02775413]
[  1.19953439e-04   1.37040792e-04  -9.58650818e-05   5.39334041e-06
   7.09815421e-06   3.67738718e-06]
149
[ 0.1631985]
[ -3.60459603e-03  -1.74554295e-03  -1.10005244e-03   2.30352638e-05
   7.55901338e-05   6.43242685e-05]
150
[ 0.22476368]
[  6.92702718e-04   3.68009282e-04   2.30665564e-04   6.22680648e-06
  -6.61284066e-06  -6.96113322e-06]
151
[ 0.21675812]
[  4.18686555e-03   1.46251023e-03   1.41583105e-03   1.17183344e-04
   2.72593822e-05  -1.22054669e-05]
153
[ 0.11992106]
[ -8.37362088e-04  -6.81555897e-04  -3.76897621e-04  -2.37827093e-05
  -1.28567601e-05  -7.90026313e-07]
154
[ 0.14129712]
[ -4.33281024e-04  -1.43407089e-04  -1.72415994e-04  -8.25111959e-06
   6.04663890e-07  -6.77859351e-07]
155
[ 0.11627132]
[ -1.82866638e-03  -2.61068170e-03  -2.03940527e-03  -2.11981395e-05
   4.09007603e-05   7.34447546e-05]
156
[ 0.14468903]
[  3.94051995e-04   8.26909115e-05   1.38675862e-04   7.27492458e-06
   5.98614382e-06  -2.84312320e-06]
158
[ 0.27678621]
[  1.05178607e-03   3.70322511e-04   1.65466126e-04   9.68159903e-07
  -2.50980443e-05  -2.03573223e-05]
159
[ 0.14294025]
[ -6.25338777e-04  -1.67070581e-04  -4.60525445e-04   2.25307761e-05
   6.70239451e-05   5.71420397e-05]
160
[ 0.14676329]
[  5.64744009e-04   3.37915074e-04   6.08761784e-05   9.21500592e-06
   9.18274653e-07   1.74727215e-06]
161
[ 0.0294027]
[  5.12700518e-04   1.87472611e-04   1.40422192e-04   1.45066666e-05
   1.33605282e-05   1.69246844e-05]
162
[ 0.05929412]
[  7.69557148e-04   8.31411083e-05   5.87108519e-04  -2.11684102e-05
  -4.78595818e-05  -4.55851472e-05]
163
[ 0.07393368]
[ -4.84809058e-04  -4.71848391e-04  -1.87844286e-04  -7.85884111e-06
  -8.39156561e-06  -3.37921497e-06]
164
[ 0.23238008]
[  2.30351039e-04   8.18349605e-05   5.08957780e-05   2.29847953e-06
  -4.19756603e-06  -4.01474529e-06]
165
[ 0.21024141]
[  2.21457361e-03   1.05278520e-03   2.99181973e-04   4.73803250e-05
  -7.96222866e-06  -4.53937573e-06]
167
[ 0.20882349]
[  3.03351380e-04   7.88652896e-05   9.17594926e-05   3.64838403e-06
  -3.45203542e-06  -8.61056620e-06]
168
[ 0.03323764]
[  5.02021314e-05   6.11761197e-05   1.53758826e-05   2.73853881e-07
  -5.74689849e-07  -2.65244047e-07]
169
[ 0.02053857]
[ -2.19834893e-04  -9.09131948e-06  -1.09760969e-04   4.75354228e-07
  -1.58440118e-06  -9.84862947e-08]
170
[ 0.04058515]
[  1.36502878e-03   7.80726842e-04   4.95750304e-04   1.27854320e-05
   7.11470609e-06   9.18411071e-06]
171
[ 0.15990619]
[  3.15543697e-03   1.98638738e-03   3.72961143e-04   4.36796106e-05
   2.53302860e-05  -1.21362678e-05]
172
[ 0.06085331]
[  3.42528168e-04   1.80532560e-05   8.09758932e-05  -3.43898894e-05
  -4.02999479e-05  -3.54804400e-05]
173
[ 0.20582849]
[ 0.01793672  0.01761433  0.00586224  0.00019311 -0.00051816 -0.0006539 ]
174
[ 0.04559514]
[ -5.72448846e-06  -2.57288853e-04   1.92329509e-04   4.93107160e-06
   1.86550175e-05   1.69318479e-05]
175
[ 0.07953429]
[ -7.51186771e-05  -1.06398668e-04  -1.50051685e-05  -8.39174726e-06
  -1.97918118e-06   2.11742497e-06]
176
[ 0.11512263]
[  3.25616806e-04   8.58806599e-05   1.95197761e-04  -3.82012428e-06
  -1.48511544e-05  -1.54365048e-05]
177
[ 0.10330283]
[  4.90444394e-04   2.41027214e-04   1.88993288e-04   1.88454017e-06
   3.84327358e-06  -6.19601965e-06]
178
[ 0.08684767]
[  1.55981661e-04   1.58444915e-04   3.61458519e-05  -2.59263748e-05
  -3.39303887e-05  -2.82287064e-05]
179
[ 0.0386591]
[  8.06474757e-05   5.92644623e-06   4.96171041e-05  -2.80254490e-07
   3.43121675e-06   3.10803475e-07]
180
[ 0.04191008]
[  6.19312272e-03  -2.85030988e-03  -7.69451867e-03   9.31963669e-05
   6.76737690e-06   1.67424043e-04]
181
[ 0.04673615]
[ 0.00581167  0.00163139 -0.00050096  0.00012815  0.00015629  0.00013709]
182
[ 0.1500551]
[ 0.00730419  0.00234097  0.00459994 -0.00017678 -0.00053603 -0.00043594]
183
[ 0.07564525]
[ -3.92826646e-04  -2.47920194e-05  -5.15596231e-04  -4.40307867e-06
   1.98825620e-05   2.59853491e-05]
184
[ 0.1600555]
[  6.47895141e-06   1.81603381e-04   2.31744349e-05   1.71524048e-05
  -4.48695438e-06  -4.94990487e-07]
185
[ 0.09336342]
[  2.63714585e-04   4.80279665e-05   1.11598305e-04   5.89216924e-06
  -5.86244097e-06  -2.14303405e-06]
186
[ 0.0098626]
[ -1.66106111e-04  -3.54139891e-05  -8.57511974e-05   1.49197060e-06
   2.03000452e-06   3.85565206e-06]
187
[ 0.22834075]
[ -1.51752187e-04  -1.29456198e-04  -6.05146537e-05  -5.05545340e-06
   2.76758234e-06   3.02772046e-06]
188
[ 0.0516865]
[  1.95544272e-04   1.59218231e-04  -1.01208388e-04   1.92895955e-06
   1.05859894e-05   1.87876898e-05]
189
[ 0.09953212]
[ -2.33135598e-03  -7.37444113e-04  -4.89257311e-04  -2.13003950e-05
   1.69778534e-05   1.15923589e-05]
191
[ 0.12612221]
[-0.01995731 -0.00452366 -0.01000335 -0.00032507  0.00051317  0.00024   ]
192
[ 0.0145412]
[  4.86054603e-03   1.88450609e-03  -9.84286674e-04  -7.41409342e-06
  -5.24543264e-05   3.72830244e-05]
193
[ 0.04229099]
[ -2.73525142e-04   2.32375677e-04  -7.53806628e-05  -6.29704617e-05
  -4.74816632e-05  -4.49651156e-05]
194
[ 0.04901804]
[ 0.00081557  0.00216423  0.00164947  0.00011055  0.00019134  0.00020961]
195
[ 0.02897314]
[  2.72939736e-04   2.71437032e-05   5.92541315e-05   4.86775534e-06
   5.37945488e-06   5.32582582e-06]
196
[ 0.031226]
[ -1.57074680e-03  -4.24047042e-04  -4.47469710e-05  -2.45844640e-05
  -4.73697763e-06  -1.71378247e-05]
197
[ 0.35180517]
[-0.01092221 -0.00452422 -0.00292176 -0.00018575  0.00013485  0.00013564]
198
[ 0.1135995]
[ -1.33083432e-03  -3.82490381e-04   3.24331828e-04  -9.95638395e-05
  -1.18151016e-04  -1.10622681e-04]
199
[ 0.01831455]
[ -3.79526804e-03   1.19672041e-05  -3.71049084e-03   8.74073085e-05
   6.99459389e-05   8.70584681e-05]
200
[ 0.20663651]
[ -3.45302109e-03  -7.21835110e-04  -1.76925657e-03  -2.42879364e-06
   1.74443060e-04   1.55409142e-04]
201
[ 0.11549931]
[ -3.21729542e-03  -2.96687242e-03  -1.15742577e-03  -9.83465874e-05
  -8.28502515e-05  -4.01751912e-05]
202
[ 0.05359783]
[ -2.96072426e-05  -1.53346907e-04   8.66356471e-05  -4.37252438e-06
  -1.11698077e-05  -1.00171099e-05]
203
[ 0.0349931]
[  4.49952354e-04  -6.17244330e-05   1.12516181e-04  -9.40400908e-08
  -8.43180436e-06  -3.35665770e-06]
204
[ 0.06416572]
[ 0.00296322 -0.0164981  -0.00462405  0.00025163 -0.00019503  0.00035926]
205
[ 0.02175466]
[  2.19205794e-04   4.90500277e-05   1.21996649e-04  -1.11706573e-05
  -1.48572675e-05  -1.32927669e-05]
206
[ 0.12048933]
[ -7.89212128e-05  -6.19513156e-05  -6.24098995e-05  -2.33033323e-07
   1.03772205e-05   6.85066462e-06]
207
[ 0.0919562]
[ -1.06561073e-03  -3.30603882e-04  -1.85288750e-04  -3.35169677e-05
   1.02470336e-05   5.15964969e-06]
208
[ 0.05200833]
[ -2.79821771e-04   3.93929709e-04  -3.63490073e-04   3.16729462e-06
   1.41724685e-06   9.71768307e-06]
209
[ 0.07397736]
[  8.94691669e-05   5.41212595e-05   8.86109698e-06   1.85522683e-06
   3.42120085e-07   1.04562186e-07]
210
[ 0.01757156]
[ -6.47821427e-06   1.57110043e-04  -1.53678519e-04   1.02569075e-05
   1.80173988e-05   2.05209058e-05]
211
[ 0.08220668]
[  1.22181278e-04   2.51234552e-05   3.85540881e-05   3.02254490e-06
   1.46740003e-06   4.91066966e-06]
212
[ 0.07715677]
[ -4.16618543e-04  -4.78999333e-04   3.33100912e-04  -4.39731097e-05
  -9.14856620e-05  -7.85319594e-05]
213
[ 0.01276739]
[  1.87120881e-03   5.51908784e-04   8.33460014e-04   6.99690920e-05
   7.87050473e-05   8.14175707e-05]
215
[ 0.08831074]
[  1.31787394e-04   2.27633701e-04  -1.03655605e-04   6.67755439e-06
  -5.24368459e-06  -3.10249047e-06]
216
[ 0.01378572]
[ -1.47055924e-04  -2.54833693e-05  -7.82261961e-05   8.15228747e-06
   3.01788431e-06   2.97300748e-06]
217
[ 0.01643928]
[  3.24084885e-04   2.01347735e-04  -1.22059824e-04   9.73769774e-06
   2.16757238e-05   2.40966845e-05]
218
[ 0.33746004]
[ -1.03119516e-03  -5.65986251e-04  -5.44373172e-04  -2.46815020e-05
   5.53967596e-05   7.34253026e-05]
219
[ 0.12786479]
[ -2.36083566e-04   1.58544388e-05  -9.00608622e-05   6.19291132e-06
   1.17764438e-05   1.66740817e-05]
220
[ 0.05155223]
[ -9.09547483e-05  -2.41915874e-06   2.29377851e-05   1.09154714e-06
   2.67581988e-06   3.98253472e-06]
221
[ 0.09396654]
[ -4.87125867e-04   7.20923331e-05  -1.23413219e-04  -1.12482127e-06
   1.04277698e-05   1.14273128e-05]
222
[ 0.13261522]
[  4.11255851e-04   1.43419220e-04   1.59173030e-04  -4.66684812e-06
  -1.04117823e-05  -2.47327465e-05]
223
[ 0.07133147]
[ -1.57949484e-04  -2.66126463e-04  -7.97200639e-05  -1.09885677e-05
   1.40707215e-06  -7.53882268e-06]
224
[ 0.13573734]
[  1.76159916e-04   6.95967128e-05   1.56875812e-05   2.04736609e-06
   6.33074215e-07   1.20896729e-07]
225
[ 0.35406475]
[  4.99060002e-04   2.58258086e-04   1.96559293e-04   5.17333000e-06
  -7.10503161e-06  -1.42832444e-05]
226
[ 0.06958202]
[ -1.08395561e-04  -1.43555257e-04  -2.25761807e-05  -4.61337101e-06
   7.29247206e-07   1.29520026e-06]
227
[ 0.08785599]
[ -1.61886412e-05   1.82597445e-06   3.67912989e-05  -1.70238287e-06
  -1.26206898e-05  -9.14017225e-06]
228
[ 0.14259225]
[ -8.32766301e-04  -5.41834537e-04  -2.75183804e-04  -3.49050700e-05
  -2.69292900e-05  -1.81888540e-05]
229
[ 0.13169957]
[  1.35139358e-04   1.26984483e-04   1.52077605e-05   5.01662557e-06
  -2.41979133e-06  -3.13825449e-08]
230
[ 0.04682169]
[ -1.20281722e-04  -6.61603105e-05   5.15567895e-05  -5.86574082e-06
  -5.46647109e-06  -4.22500691e-06]
231
[ 0.14372872]
[  4.13667301e-04   1.68038362e-04   1.52283547e-04  -2.54064032e-06
  -1.08191934e-05  -9.06374075e-06]
232
[ 0.02627987]
[ -1.20356394e-04   1.46844551e-04  -9.65407361e-05  -4.13731087e-05
  -1.77209483e-05  -2.99651082e-05]
233
[ 0.02734472]
[  1.77423431e-06   5.45589567e-05  -5.20149770e-05   9.42969133e-06
   1.14032304e-05   8.17362231e-06]
234
[ 0.02594253]
[  9.65777521e-04   1.12736229e-03   3.05640145e-04  -8.05709756e-05
  -2.08769502e-05  -2.65226864e-05]
235
[ 0.08780839]
[ -5.23040971e-05   2.29399730e-03  -1.44834593e-03   1.45386436e-04
   4.28127053e-05  -4.86557203e-06]
236
[ 0.14078655]
[ -2.10221452e-03  -6.51452612e-04  -2.12579979e-04  -6.81667196e-05
  -2.94542527e-05  -1.36207957e-05]
237
[ 0.06914543]
[  8.52957232e-05  -1.60116975e-04  -2.20946378e-04   3.16772688e-06
   5.90793410e-06   9.84573955e-06]
238
[ 0.06348448]
[ -1.37450167e-04  -3.98863816e-05  -6.28879127e-05   2.40435125e-06
   3.07096637e-06   6.67244915e-06]
239
[ 0.032948]
[  7.11842026e-05  -1.27497108e-05  -4.50779494e-05   5.50707120e-06
  -1.78799496e-06   3.39443019e-06]
240
[ 0.0303729]
[  9.05346079e-05   1.82300216e-06   6.56683196e-05  -1.96927388e-07
   1.43559991e-06   2.76385837e-06]
241
[ 0.0541553]
[ -8.73497419e-03  -2.80377809e-03  -4.03105951e-03  -1.19932677e-04
  -9.85797640e-05  -8.04860649e-05]
242
[ 0.0306206]
[ -4.37005436e-07  -9.07138881e-05   4.87984725e-05  -2.45754736e-06
   6.09074048e-06   3.49552414e-07]
243
[ 0.02245054]
[ -3.66700531e-04  -2.31210821e-05   1.45664460e-04  -2.25293652e-05
  -3.02048678e-05  -2.61551715e-05]
244
[ 0.06829205]
[ -1.05084094e-04   5.26648116e-05  -7.25011100e-05  -6.25128428e-06
  -9.97688229e-07   8.35749564e-06]
245
[ 0.04672428]
[  1.53377904e-04   7.06805692e-05   1.09971606e-05   1.71744813e-07
   5.36708183e-07   1.17822972e-07]
246
[ 0.26807103]
[ -6.55245016e-03  -4.49791936e-03  -2.36859357e-03  -3.52106390e-05
   1.43879783e-04   2.46942403e-04]
247
[ 0.02126698]
[  1.87088501e-04   1.96383960e-04  -1.04410601e-05   4.13078136e-06
   5.52365483e-06   3.40766125e-06]
248
[ 0.05501686]
[ -1.99063953e-04  -2.15824793e-04   1.34703925e-04  -1.42082223e-05
  -5.77650333e-06  -6.18186065e-06]
249
[ 0.08895991]
[ -4.61256350e-05   2.83652387e-05  -6.18414440e-05  -1.13613313e-06
   1.17489286e-06  -1.04551695e-06]
250
[ 0.05246814]
[  1.07595675e-04  -4.46772521e-05   5.52951673e-05  -3.81433588e-06
  -6.17982137e-06  -7.77542062e-06]
251
[ 0.02006018]
[  4.17775640e-05   9.41309122e-06   2.52587137e-05  -2.85300787e-06
  -4.03037586e-06  -4.14482191e-06]
252
[ 0.10120942]
[ -1.79032450e-04  -1.70588160e-04  -5.15568056e-05  -5.18288696e-06
   2.52550282e-08  -3.83113240e-07]
253
[ 0.01350328]
[  8.81734001e-04   2.62523976e-03  -2.16431074e-04   3.98059571e-05
   5.45061358e-05   4.56904622e-05]
254
[ 0.19748006]
[ -9.09648817e-05  -9.71991807e-05   3.71334078e-05  -5.86876625e-06
  -6.78028220e-06  -1.66779953e-06]
255
[ 0.03777303]
[  1.63972819e-04  -1.42458361e-05   5.51115889e-05  -2.25043932e-06
  -7.83917500e-07  -2.37397316e-06]
20
[ 0.07897913]
[ -1.59182134e-02  -1.38606752e-02  -1.24074949e-02   1.43686935e-05
   1.02032887e-03   6.59636429e-04]
23
[ 0.26262774]
[ -6.80258013e-03  -2.45095495e-03  -3.56383837e-03   2.01018110e-06
   3.17662863e-04   2.75501828e-04]
27
[ 0.08218686]
[  2.47804871e-03   4.87090455e-04   3.42089371e-03  -1.84096831e-06
  -2.03576217e-04  -1.55720367e-04]
32
[ 0.04175258]
[ -4.92083160e-05  -1.33564540e-03   2.77935420e-04   7.63935128e-06
  -1.16991555e-04  -6.79285338e-05]
38
[ 0.11163563]
[-0.02524837 -0.00183225 -0.00072516  0.00013305  0.00097471  0.0007232 ]
42
[ 0.06104885]
[ -2.89414642e-03  -1.14757402e-03  -1.87178002e-03   2.00181521e-05
   1.34705581e-04   9.24419257e-05]
55
[ 0.07765276]
[  3.24611238e-04  -1.88069866e-04  -2.93385676e-05  -4.07203910e-06
  -3.39095915e-05  -1.33656597e-05]
64
[ 0.03844891]
[ -6.16043333e-04  -1.46633729e-03  -1.27010531e-03  -7.30134054e-05
   2.47827220e-05  -4.92700391e-05]
65
[ 0.06080553]
[  5.54829780e-03   4.51933057e-04  -5.26603383e-04   4.59671387e-05
  -2.48319218e-04  -1.55066871e-04]
71
[ 0.07949174]
[ -7.73529653e-04   6.52377545e-04  -7.34590082e-04  -3.31425885e-05
   5.49589156e-05   4.15222594e-05]
72
[ 0.07465383]
[  7.02865711e-03   1.08307116e-03   2.24934726e-03   3.89312138e-05
  -1.69136071e-04  -8.43060630e-05]
93
[ 0.017191]
[  3.61322845e-04   4.98367481e-04   1.91214172e-04  -3.03091277e-05
  -2.26293646e-05  -3.08862400e-05]
101
[ 0.06635772]
[ -9.22335990e-04   1.60124347e-04  -3.47007319e-04  -5.30922326e-06
   4.07502763e-05   1.80322980e-05]
130
[ 0.03471153]
[  2.72091306e-03   2.51321228e-03   7.33749560e-04   3.71400984e-05
   9.76969758e-05   5.69869592e-05]
134
[ 0.00734391]
[  3.63870106e-04  -1.26571405e-03  -1.20212158e-03   1.00694236e-04
   9.44221860e-05   9.92440204e-05]
152
[ 0.2049545]
[ -1.46630043e-04  -1.81489660e-05  -1.02880075e-04  -1.40025261e-05
   1.14656644e-06   1.89836785e-06]
157
[ 0.13225272]
[  1.17444246e-03   5.05510694e-04   4.27144815e-04  -3.38106232e-06
  -2.76077155e-05  -1.52566001e-05]
166
[ 0.06773823]
[  5.43183045e-04   3.50494437e-04  -5.63054230e-04   8.65991045e-05
   6.58493310e-05   5.13422870e-05]
190
[ 0.13417229]
[  4.26958153e-04   1.64316614e-04   2.09126922e-04   1.19945156e-05
  -1.05610439e-06   3.09969538e-07]
214
[ 0.02993987]
[  1.78051659e-04  -3.31915585e-04  -7.16202571e-04  -1.47643343e-05
  -4.70174180e-05  -4.57640362e-05]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 20, 23, 27, 32, 38, 42, 55, 64, 65, 71, 72, 93, 101, 130, 134, 152, 157, 166, 190, 214]

In [ ]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)

In [106]:
TimeCCMax=np.zeros(S[3])


for j in range(S[3]):

    CCry=np.correlate(DTvar[:,j],Xkdff[0,:]+Xkdff[1,:]+Xkdff[2,:],'full')
    TimeCCMax[j]=((np.argmax(np.abs(CCry[DTvar.shape[0]-400:DTvar.shape[0]+400])))-400)/100.0

In [ ]:
Ua=sio.loadmat(filename)
Xk=Ua['Xk']

In [63]:
plt.plot(Xkdff[range(3),:].T)


Out[63]:
[<matplotlib.lines.Line2D at 0x7f8896c45810>,
 <matplotlib.lines.Line2D at 0x7f8896c45a10>,
 <matplotlib.lines.Line2D at 0x7f8896c45c10>]

In [123]:
if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

C=np.zeros((S[3],3))
i=1
l=0



for j in range(S[3]):  
    if Label_ICs[j]=='a' and TimeCCMax[j]>0 and TimeCCMax[j]<0.3:
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,0]=10*TimeCCMax[j]
        C[j,1]=1-10*TimeCCMax[j]

        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.2*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas2[1,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        #print(j+1)
        #print(C[j,:])
        #if l==2:
         #   break

for j in range(S[3]):  

    if Label_ICs[j]=='a' and TimeCCMax[j]<0 and TimeCCMax[j]>-0.3:
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        #print(j+1)
        C[j,2]=-6*TimeCCMax[j]
        C[j,1]=1+6*TimeCCMax[j]
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.5*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas[0,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        #print(j+1)
        #print(C[j,:])
        #if l==2:
            #break
    

C=np.zeros((S[3],3))
i=1
l=0            
            
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/90
    #Df=Df/(np.max(np.max(np.max(Df),3)))
Df[Df>1]=1
Df[Df<0]=0
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)



In [71]:
len(Label_ICs)


Out[71]:
193

In [74]:
for i in range(193,256):
    Label_ICs.append('')

In [76]:
Label_ICs


Out[76]:
['',
 '',
 '',
 '',
 '',
 '',
 '',
 'a',
 'a',
 'a',
 '',
 '',
 'a',
 'a',
 'a',
 '',
 '',
 '',
 '',
 'a',
 'a',
 '',
 'a',
 'a',
 '',
 'a',
 'a',
 'a',
 '',
 '',
 'a',
 '',
 '',
 'a',
 '',
 '',
 'a',
 'a',
 'a',
 '',
 '',
 '',
 'a',
 '',
 '',
 '',
 'a',
 '',
 '',
 'a',
 '',
 'a',
 'a',
 'a',
 '',
 'a',
 '',
 '',
 'a',
 'a',
 '',
 '',
 '',
 '',
 'a',
 'a',
 '',
 '',
 'a',
 '',
 '',
 'a',
 'a',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 'a',
 '',
 '',
 '',
 'a',
 '',
 '',
 '',
 '',
 '',
 'a',
 'a',
 '',
 '',
 '',
 '',
 '',
 'a',
 'a',
 '',
 '',
 '',
 '',
 'a',
 '',
 '',
 'a',
 '',
 'a',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 'a',
 '',
 '',
 'a',
 '',
 '',
 '',
 'a',
 '',
 'a',
 '',
 'a',
 '',
 'a',
 'a',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 'a',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 'a',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 'a',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '',
 '']

In [ ]: