This pipeline opens the result of ICAalamelodic.m, lets the user interactively label the components that look like neuronal activity (rather than movement artefacts or noise), sort them by label, plots a final summary for the chosen components, and save the reordered maps and time series.


In [1]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
%matplotlib inline 
import pylab

Open time series


In [2]:
import scipy.io as sio

In [117]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/test7/THDDCGCaMP62/100404series/100405seriesint252Smith0_4_60ICTSROIThresh3.mat

In [118]:
Ua=sio.loadmat(filename)
Ua


Out[118]:
{'TS': array([[ -1.09592862e-03,  -1.64632858e-04,  -3.31881324e-04, ...,
           4.21103580e-01,   7.89417045e-03,  -6.31801609e-03],
        [ -1.47219165e-03,   1.91960770e-04,  -1.64789104e-05, ...,
           5.71964126e-01,   5.56198548e-03,  -5.21745120e-03],
        [ -1.82270430e-03,   5.80156630e-04,   2.93981538e-04, ...,
           7.02895718e-01,   3.20776099e-03,  -4.07676717e-03],
        ..., 
        [ -2.90323306e-03,   1.87250440e-03,   1.04961179e-03, ...,
           9.53555293e-02,   3.18039463e-03,   1.99446119e-03],
        [ -2.39157758e-03,   2.02257552e-03,   6.91589238e-04, ...,
           5.33441034e-02,   2.49075746e-03,   1.19700152e-03],
        [ -1.73962540e-03,   1.47121456e-03,   5.03059656e-04, ...,
           3.88023198e-02,   1.81176851e-03,   8.70694778e-04]]),
 '__globals__': [],
 '__header__': 'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Wed Aug 22 01:59:46 2018',
 '__version__': '1.0'}

In [119]:
DT=Ua['TS']

In [120]:
DT.shape


Out[120]:
(24112, 252)

In [121]:
S1=DT.shape

In [122]:
DTmean=np.zeros(S1)
DTvar=np.zeros(S1)
Var=np.zeros(S1[1])

In [123]:
for i in range(S1[1]):
    DTmean[:,i]=DT[:,i]-np.mean(DT[:,i],0)

In [124]:
for i in range(S1[1]):
    Var[i]=np.sqrt(np.var(DTmean[:,i]))
    DTvar[:,i]=DTmean[:,i]/Var[i]

In [125]:
DTvar.shape


Out[125]:
(24112, 252)

open maps


In [126]:
import nibabel as nb

In [13]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)


/media/test7/THDDCGCaMP62/100404series/100405seriesint252Smith0_4_60IC.nii

In [14]:
img1 = nb.load(filename2)

In [15]:
data = img1.get_data()

In [16]:
S=data.shape

In [17]:
S


Out[17]:
(88, 56, 37, 252)

Zscore maps


In [127]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])

Transform the maps to have zero mean


In [128]:
for i in range(S[3]):
    Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)

Transform the maps to have unit variance and zscore


In [129]:
for i in range(S[3]):
    Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
    Var[i]=np.sqrt(np.var(Dsq))
    Dvar=Demean[:,:,:,i]/Var[i]
    Dmaps[:,:,:,i]=Dvar-2.5
Dmaps[Dmaps<0]=0

Order ICs by variance


In [130]:
datao=data
Dmapso=Dmaps

In [131]:
plt.plot(Var)


Out[131]:
[<matplotlib.lines.Line2D at 0x7f54ff749c90>]

Separate maps in substacks, sort the independent components by brain regions


In [132]:
my_cmap=plt.cm.jet
my_cmap.set_bad(alpha=0)
Good_ICs=np.zeros(S[3])
Label_ICs=[]
pylab.rcParams['figure.figsize'] = (13, 2.5)

In [133]:
Dtemp=data[:,:,:,0]

In [134]:
%%javascript
IPython.OutputArea.auto_scroll_threshold =4000;



In [135]:
if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    D1=np.zeros([S[0],S[1],Nstack])
    Dmean=Dtemp[:,:,range(Nstack)]
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        #Dmean[:,:,i]=np.max(Vmean,0)
        Dmean[:,:,i]=Vmean
else:
    Nstack=S[2]
    D1=np.zeros([S[0],S[1],S[2]])
    Dmean=data[:,:,range(S[2])]  
    Dmean=np.squeeze(Dtemp[:,:,:])

In [136]:
DTvar.shape


Out[136]:
(24112, 252)

In [137]:
S


Out[137]:
(88, 56, 37, 252)

In [29]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/test7/THDDCGCaMP62/100404series/100404seriesXk.mat

In [30]:
Ua=sio.loadmat(filename)
Xk=Ua['Xk']
#Xk[1,:]=Ua['Walk']

In [54]:
Xk.shape


Out[54]:
(6, 24112)

In [138]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenamet = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenamet)
nimt=nb.load(filenamet)
Dtemp=np.squeeze(nimt.get_data())
Dtemp.shape


if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    Dmean=np.zeros([S[0],S[1],Nstack])
    #Dmean=np.squeeze(data[:,:,range(Nstack),2])
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        Dmean[:,:,i]=Vmean


/media/test7/THDDCGCaMP62/100404series/MAX_100405seriesint252Smith0_4_60IC.nii

In [139]:
plt.imshow(Vmean,cmap=plt.cm.gray)


Out[139]:
<matplotlib.image.AxesImage at 0x7f54ff860750>

In [33]:
Xk=Xk.T

In [34]:
Xk.shape


Out[34]:
(6, 24112)

In [144]:
Label_ICs=[]

In [104]:
Xksmoothed=np.zeros(Xk.shape)

for i in range(Xk.shape[1]):
    Xksmoothed[:,i]=np.mean(Xk[:,max(0,i-999):min(Xk.shape[1],i+1000)],1)


Xkdff=Xk[range(3,6),:]-Xksmoothed[range(3,6),:]

In [141]:
plt.plot(Xksmoothed.T)
plt.show()



In [107]:
plt.plot(Xkdff.T)


Out[107]:
[<matplotlib.lines.Line2D at 0x7f54fae81fd0>,
 <matplotlib.lines.Line2D at 0x7f54fae0f210>,
 <matplotlib.lines.Line2D at 0x7f54fae0f350>]

In [142]:
TimeCCMax=np.zeros(S[3])

In [149]:
if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

C=np.zeros((S[3],3))
i=1
l=0



for j in range(S[3]):  
    if Label_ICs[j]=='a' and TimeCCMax[j]>0 and TimeCCMax[j]<0.3:
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,0]=10*TimeCCMax[j]
        C[j,1]=1-10*TimeCCMax[j]

        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.2*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas2[1,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        #print(j+1)
        #print(C[j,:])
        #if l==2:
         #   break

for j in range(S[3]):  

    if Label_ICs[j]=='a' and TimeCCMax[j]<0 and TimeCCMax[j]>-0.3:
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        #print(j+1)
        C[j,2]=-6*TimeCCMax[j]
        C[j,1]=1+6*TimeCCMax[j]
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.5*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas[0,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        #print(j+1)
        #print(C[j,:])
        #if l==2:
            #break
    

C=np.zeros((S[3],3))
i=1
l=0            
            
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/90
    #Df=Df/(np.max(np.max(np.max(Df),3)))
Df[Df>1]=1
Df[Df<0]=0
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)



In [59]:
#zip(range(S[3]),Label_ICs)

In [ ]:
CCry=np.correlate(DT[:,5],DT[:,11],'full')

In [60]:
set(Label_ICs)


Out[60]:
{'', 'gamma'}

In [ ]:
Label_ICs[94]='M'

In [ ]:
Label_ICs[104]='alpha'
Label_ICs[100]='alpha'

Label_ICs[138]='betap'
Label_ICs[94]='betap'
Label_ICs[90]='betap'

Label_ICs[67]='gamma'
Label_ICs[60]='gamma'
Label_ICs[24]='gamma'
Label_ICs[54]='gamma'
Label_ICs[33]='gamma'

In [85]:
Xk.shape


Out[85]:
(6, 24112)

In [66]:
Rsq=np.zeros((1,S[3]))
Betas=np.zeros((3,S[3]))

In [67]:
from sklearn import linear_model

In [68]:
algorithm = linear_model.LinearRegression()

In [70]:
for j in range(S[3]):
    model = algorithm.fit(Xkdff.T, DT[:,j])
    Betas[:,j] = model.coef_
    Rsq[:,j] = model.score(Xkdff.T,DT[:,j])

In [71]:
Xkdff.shape


Out[71]:
(3, 24112)

In [ ]:
Label_ICsb=Label_ICs[i for i in range(4,256)]

In [ ]:
len(Label_ICsb)

In [72]:
List1=[(Label_ICs[i],i) for i in range(S[3])]
Newlist=sorted(List1, key=lambda List1: List1[0])

Neworder=[Newlist[i][1] for i in range(S[3])]

NewDT=DTvar[:,Neworder[:]].T

for j in range(len(Neworder)):
    A=NewDT[:,j]
    V=np.sqrt(np.var(A))
    NewDT[:,j]=A/V

C1=np.zeros([16,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
C1[6][:]=(1,0.5,0)
C1[7][:]=(0,1,0.5)
C1[8][:]=(0.5,0,1)
C1[9][:]=(0.8,0.8,0.5)
C1[10][:]=(0.5,1,1)
C1[11][:]=(1,0.5,1)
C1[12]=(0.5,0.5,0.5)
C1[13]=(0.2,0.5,0.5)
C1[14]=(0.5,0.2,0.5)
C1[15]=(0.5,0.5,0.2)
h=3

Newmaps=Dmaps[:,:,:,Neworder[:]]

L=len(set([Label_ICs[Neworder[i]] for i in range(len(Neworder))]))

Regionmaps=np.zeros([S[0],S[1],L,3])
Datasort=np.zeros([S[0],S[1],S[2],L,3])

Regionname=[]

DMapsordered=Dmapso[:,:,:,Neworder[:]]

j=0
i=0
k=Label_ICs[Neworder[0]]
m=0
Regionname.append(Label_ICs[Neworder[i]])
for i in range(len(Neworder)):
    
    #C2=C1[i%6][:]
    for l in range(3):
        M=np.max(np.squeeze(np.reshape(Newmaps[:,:,:,i],S[0]*S[1]*S[2])))
        Regionmaps[:,:,j,l]=Regionmaps[:,:,j,l]+0.6*np.max(DMapsordered[:,:,:,i],2)*C1[i%12+1][l]/M
        Datasort[:,:,:,j,l]=Datasort[:,:,:,j,l]+Dmaps[:,:,:,Neworder[i]]*C1[i%15+1][l] 
    i=i+1
    m=m+1
    if i<len(Neworder):
        k1=Label_ICs[Neworder[i]]
        
        
    if k1 != k:
        j=j+1
        k=k1
        m=0
        Regionname.append(Label_ICs[Neworder[i]])

pylab.rcParams['figure.figsize'] = (14, 5)
import scipy
from scipy import ndimage
j=0
m=0
L=0
k=Label_ICs[Neworder[0]]
for i in range(len(Neworder)):
    m=m+1
    
    
    if i<len(Neworder):
        k1=Label_ICs[Neworder[i]]
        
    if k1 != k:
        
        k=k1
        m=0
        
        plt.show()
        plt.figure(2*j+1)
        Rotated_Plot = ndimage.rotate(Regionmaps[:,:,j], -90)
        IM=plt.imshow(Rotated_Plot) 
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
        j=j+1
        plt.figure(2*j)
        plt.plot(Xk[0,:]/np.std(Xk[0,:])+0.5,color=(1,0,0))   
        plt.plot(Xk[1,:]/np.std(Xk[1,:])+0.5,color=(0,1,0))
        plt.plot(Xk[2,:]/np.std(Xk[1,:])+0.5,color=(0.5,0.5,0))    
        #plt.plot(Xk[3,:]/np.std(Xk[1,:])+0.5,color=(0,0.5,1))
    plt.plot(NewDT[i,:]+h*m,color=C1[i%12+1][:])
    print(Neworder[i])
    print(Rsq[:,Neworder[i]])
    print(Betas[:,Neworder[i]])
plt.figure(2*j+1)
Rotated_Plot = ndimage.rotate(Regionmaps[:,:,j], -90)
IM=plt.imshow(Rotated_Plot)
frame1 = plt.gca()
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
print(Neworder)


0
[ 0.24050196]
[-0.00134413 -0.0001851  -0.00020095]
1
[ 0.23688925]
[-0.00110808 -0.00016594 -0.00014076]
2
[ 0.0712372]
[ 0.00037858  0.00018124 -0.00014833]
3
[ 0.6025803]
[  1.37845223e-03  -5.85304419e-05  -1.62080197e-06]
4
[ 0.05217743]
[ 0.00015944  0.00011572 -0.00015389]
5
[ 0.00756376]
[ -5.13139889e-05  -9.92667189e-05  -2.42583517e-05]
6
[ 0.17578532]
[ -6.67084795e-04  -6.42001534e-05   4.21608660e-05]
7
[ 0.01413542]
[ -5.15203839e-05  -1.01271513e-04   1.68865129e-05]
8
[ 0.56296086]
[  9.81995900e-04  -8.27653826e-05   5.36521761e-06]
9
[ 0.59730938]
[  1.01803442e-03  -5.97473818e-05  -1.03317896e-05]
10
[ 0.58698783]
[  9.98755666e-04  -6.70635444e-05  -1.22032994e-05]
11
[ 0.57785364]
[  9.58398162e-04  -1.12679163e-04   4.91216498e-06]
12
[ 0.01128904]
[ -1.49170491e-04  -6.47260519e-05  -1.86521217e-05]
13
[ 0.52257675]
[  8.88278743e-04  -6.41034215e-05   7.85078481e-06]
14
[ 0.39898077]
[  6.81448054e-04  -1.38261930e-04   1.30560621e-05]
15
[ 0.44145239]
[  7.86429764e-04  -3.54791488e-05  -1.77255960e-05]
16
[ 0.01546607]
[ -1.23729642e-04  -6.12134631e-05   1.27943436e-05]
17
[ 0.00949263]
[ -1.10502156e-04  -4.01790935e-05   8.20019334e-07]
18
[ 0.56625631]
[  8.28501836e-04  -3.38009867e-05   3.42986582e-06]
20
[ 0.5700397]
[  7.93742644e-04  -3.57379464e-05   5.48640150e-06]
21
[ 0.20088216]
[ 0.00053214  0.00014122  0.00010629]
22
[ 0.47343962]
[  6.75232772e-04  -6.99937993e-05   5.27566376e-06]
23
[ 0.57081594]
[  7.52098699e-04  -6.06189417e-05   7.63028084e-07]
24
[ 0.23857628]
[ -5.44673261e-04  -5.69472041e-05  -4.90359833e-05]
26
[ 0.04827912]
[  1.77606624e-04   6.62318431e-05  -4.75993386e-05]
27
[ 0.0609851]
[  2.04310828e-04   7.19292936e-05  -5.12051827e-05]
28
[ 0.02496476]
[ -3.40117725e-06  -6.56185466e-05   4.65969917e-05]
29
[ 0.14840128]
[  3.47716167e-04   7.96595153e-05  -5.74142168e-05]
30
[ 0.1375854]
[  3.26366300e-04  -3.62824037e-05  -1.35535043e-05]
31
[ 0.44920482]
[  5.94666589e-04  -2.84488331e-05  -1.24316803e-05]
32
[ 0.19766068]
[  3.40504953e-04  -8.17064008e-05   2.11426572e-05]
33
[ 0.36411342]
[  4.89998205e-04  -8.23688532e-05  -1.82449621e-05]
34
[ 0.20785814]
[  3.99991392e-04   2.64636248e-05  -4.29553512e-05]
35
[ 0.33891451]
[  4.69812258e-04  -6.87011292e-05   3.16420249e-05]
36
[ 0.05939691]
[  1.87920373e-04  -3.05233222e-05  -1.38997999e-05]
37
[ 0.02275439]
[  2.98548391e-05  -1.11081664e-05  -9.15847701e-05]
38
[ 0.07921573]
[  7.78701316e-05  -1.05089043e-04   3.65437101e-05]
39
[ 0.04018985]
[ -1.72595897e-04  -4.65813940e-05  -2.90157382e-06]
41
[ 0.43554457]
[  4.74825902e-04  -6.81298774e-05  -9.32801944e-06]
42
[ 0.43627437]
[  4.82314601e-04  -5.89044404e-05   2.16858129e-05]
43
[ 0.02085194]
[ -9.98420467e-05   7.04956546e-06   2.48084460e-05]
44
[ 0.45592791]
[  5.36267623e-04   7.97313630e-06   1.12249942e-05]
45
[ 0.39565207]
[ -5.21068446e-04  -4.04487510e-05  -5.42118995e-05]
46
[ 0.20697636]
[  3.65696514e-04   4.88566747e-05   1.30169462e-07]
47
[ 0.50087289]
[  5.10983910e-04  -3.09073130e-05  -1.17156946e-05]
48
[ 0.15763404]
[  1.88641358e-04  -1.00304084e-04   2.41422693e-05]
49
[ 0.40947031]
[  4.30083960e-04  -6.57792044e-05   1.06788735e-05]
50
[ 0.51145794]
[  5.11335205e-04  -3.35811077e-05   5.65106739e-06]
51
[ 0.08089402]
[ -1.26086621e-05   7.33622383e-05  -8.26303815e-05]
52
[ 0.05160659]
[  1.43617771e-04  -2.80572002e-05   2.32860504e-05]
53
[ 0.49444529]
[  4.52681364e-04  -7.73925542e-05  -1.37284027e-05]
54
[ 0.05862785]
[ -1.73135949e-04  -3.06763674e-05   1.31337309e-05]
55
[ 0.37687662]
[  3.94480908e-04  -6.18106659e-05  -2.80609228e-06]
56
[ 0.41381222]
[  4.34584227e-04  -4.00704368e-05   1.64838454e-05]
57
[ 0.25234636]
[  2.95161860e-04  -7.57765694e-05   1.22170236e-05]
58
[ 0.4092271]
[  3.90519319e-04  -7.44848364e-05   3.42305839e-05]
59
[ 0.47361938]
[  4.53738996e-04  -6.22959224e-06   4.57776790e-06]
60
[ 0.13095574]
[ -2.54406731e-04  -6.30569700e-05  -1.03577404e-05]
61
[ 0.11696535]
[  1.47718019e-04  -7.23072212e-05   2.31224553e-05]
62
[ 0.12427428]
[  1.22576575e-04  -1.01949910e-04  -2.16235473e-05]
63
[ 0.10391441]
[ -3.34849261e-05   8.71072861e-05  -6.08879271e-05]
64
[ 0.14413615]
[  1.80126077e-04  -7.59453580e-05  -1.22211293e-05]
65
[ 0.33354693]
[  3.58213085e-04  -3.30682832e-05   2.24577642e-05]
66
[ 0.01614662]
[  6.70829310e-05  -1.78503211e-05  -1.16240890e-05]
67
[ 0.21198255]
[  2.84168415e-04  -1.04603049e-05  -1.56553343e-05]
68
[ 0.15050216]
[  1.46593039e-04  -7.80388545e-05   5.09825849e-05]
69
[ 0.10826399]
[ -1.79560610e-04  -3.67212767e-05   4.71856297e-05]
70
[ 0.40119937]
[  3.72442326e-04  -3.10192530e-05   1.44177365e-05]
71
[ 0.46408635]
[  3.97399305e-04  -2.37145792e-05  -4.84117332e-06]
72
[ 0.10280695]
[  6.74925896e-06  -9.95975629e-05   2.95613218e-05]
73
[ 0.15434751]
[  1.86879603e-04  -5.77002908e-05  -1.46502952e-05]
74
[ 0.41178862]
[  3.41926942e-04  -5.56825275e-05   7.50402026e-08]
75
[ 0.40341973]
[  3.41121651e-04  -5.09259729e-05   1.92444201e-05]
76
[ 0.10700344]
[  1.49706451e-04  -4.69224592e-05   4.87532161e-06]
77
[ 0.20670836]
[  2.39430517e-04  -3.33394894e-05  -1.61790951e-06]
78
[ 0.30737655]
[ -2.93090369e-04   3.69259451e-05  -1.11365558e-05]
79
[ 0.020409]
[ -1.05762672e-05  -3.29590395e-05   2.73102817e-05]
80
[ 0.02921819]
[ -7.97530795e-05  -2.59252468e-05   2.20620233e-05]
81
[ 0.00777643]
[ -2.61759786e-05  -1.28984474e-05  -4.27670700e-05]
82
[ 0.16234154]
[ -2.24549324e-04  -7.08674014e-05   4.95476342e-06]
83
[ 0.01770354]
[  4.18743128e-05  -2.02057709e-05   2.32619342e-05]
84
[ 0.03106288]
[ -8.75936221e-05  -5.93374918e-05  -1.79241096e-05]
85
[ 0.05222261]
[  8.95782612e-05   2.17716957e-05  -4.53072420e-05]
86
[ 0.28288357]
[  2.48962117e-04  -5.54657783e-05  -8.76795567e-06]
87
[ 0.11232838]
[  1.46990629e-04  -4.35457352e-05   1.00955714e-06]
88
[ 0.02931929]
[  1.00818569e-04   9.98344545e-06   2.00241550e-05]
90
[ 0.26798577]
[  2.35125855e-04  -5.70128534e-05   1.90950961e-05]
91
[ 0.08013289]
[  6.09029180e-05  -6.80516022e-05   1.62824531e-05]
92
[ 0.04625229]
[  5.99162066e-05  -4.37680447e-05   1.68490898e-05]
93
[ 0.03814808]
[ -5.48285036e-05  -6.65623001e-05  -4.03340660e-06]
94
[ 0.38265188]
[  2.91937400e-04  -5.40039758e-05   1.59409447e-05]
95
[ 0.19119653]
[  2.15119072e-04  -2.68835871e-05   1.72238980e-05]
96
[ 0.00893312]
[  1.69361254e-05  -2.23518771e-05   7.48025664e-06]
97
[ 0.0642308]
[ -2.92417969e-05  -6.98485702e-05   2.35956925e-05]
98
[ 0.07630741]
[  1.19304600e-04  -1.68952333e-05   5.02146936e-05]
99
[ 0.36415078]
[ -2.80696134e-04   4.54918551e-05   1.98328149e-05]
100
[ 0.24325194]
[  2.84079441e-04   5.52661493e-05   3.59039449e-05]
101
[ 0.20755511]
[  1.90159165e-04  -4.98807448e-05   2.83070764e-05]
102
[ 0.38850939]
[  2.73906284e-04  -6.07365598e-05   7.13842790e-06]
103
[ 0.10841392]
[  5.45108035e-05   9.70760788e-05  -1.44715432e-05]
104
[ 0.18027826]
[  2.02489567e-04   3.22153124e-06  -3.54428134e-05]
105
[ 0.32015365]
[  2.63656297e-04  -3.38028249e-05   1.20486540e-05]
106
[ 0.27218463]
[  2.32905667e-04  -3.80074789e-05   3.04082732e-06]
107
[ 0.00659705]
[  4.51164963e-05   1.54371639e-05   9.47450478e-06]
108
[ 0.10529463]
[ -1.47511688e-04  -2.10450662e-05   3.00368590e-05]
109
[ 0.47497263]
[  3.18777917e-04  -2.89718539e-05   1.90354358e-05]
110
[ 0.2765763]
[  2.56994685e-04   5.48733749e-06  -2.34269805e-06]
111
[ 0.08330605]
[ -1.49252620e-04  -2.36548854e-05  -7.03823804e-06]
112
[ 0.1210789]
[ -4.31243039e-05   5.09520117e-05  -7.02582782e-05]
113
[ 0.18257094]
[  1.16843613e-04  -7.75893396e-05   7.46782273e-06]
114
[ 0.21691887]
[ -2.37974097e-04  -4.88752598e-05  -1.78410217e-05]
115
[ 0.21614422]
[ -2.28976711e-04  -1.07996426e-05  -3.10061319e-05]
116
[ 0.10277429]
[ -1.39067539e-04   1.57059309e-05  -1.09088861e-05]
117
[ 0.08148005]
[ -1.33833372e-04  -5.79915859e-05  -1.18914330e-05]
118
[ 0.18724701]
[  1.23116021e-04  -7.24029679e-05   5.61154697e-06]
119
[ 0.15131927]
[  1.07283680e-04  -6.59404973e-05   6.71342318e-06]
120
[ 0.27709664]
[  1.96633583e-04  -5.12512604e-05  -8.65324572e-06]
121
[ 0.06565801]
[  9.40317393e-05  -2.58662607e-05   1.51397059e-06]
122
[ 0.23407665]
[ -2.22359866e-04  -2.44806282e-05   5.59955893e-06]
123
[ 0.05073576]
[ -1.06187604e-04  -8.81680468e-06  -3.13537496e-05]
124
[ 0.05854276]
[ -1.14127535e-04  -3.78219012e-05  -1.15649658e-05]
125
[ 0.13368781]
[  1.29582269e-04  -3.40588273e-05  -2.66798143e-05]
126
[ 0.05327885]
[  9.27758476e-05  -3.64607137e-06  -1.52942058e-05]
127
[ 0.44313606]
[  2.86968864e-04  -6.29793679e-06   1.81277069e-05]
128
[ 0.47753794]
[  2.83402920e-04  -2.60846952e-05   1.45382195e-05]
129
[ 0.26864676]
[  2.04766121e-04  -2.47169971e-05  -1.52363658e-05]
130
[ 0.03763661]
[  9.23309261e-05   2.33750628e-05   1.19393831e-05]
131
[ 0.37919212]
[ -2.23584907e-04   4.88535751e-05  -1.38959641e-05]
132
[ 0.03900682]
[  2.22957191e-05  -2.39116267e-05   3.66220236e-05]
133
[ 0.22851739]
[  1.69088674e-04  -4.17438873e-05  -7.12695032e-06]
134
[ 0.12888325]
[  1.22412304e-04  -3.47148419e-05   3.46369527e-06]
135
[ 0.03644265]
[ -7.72560458e-05  -2.58892840e-05   5.02165720e-06]
136
[ 0.01494947]
[ -3.67713863e-05   1.50551676e-05  -2.35935520e-06]
137
[ 0.38723845]
[  2.41744888e-04  -2.33783542e-05   5.39224364e-06]
138
[ 0.39935128]
[  2.18815812e-04  -4.99174725e-05   8.97975293e-06]
139
[ 0.21979371]
[  1.29920877e-04  -6.48246844e-05  -1.88503377e-05]
140
[ 0.18909718]
[ -1.99134600e-04  -5.45377213e-05  -6.88463008e-05]
141
[ 0.32012541]
[ -2.19762292e-04  -2.64353997e-07   1.48637299e-05]
142
[ 0.0462118]
[  8.95724664e-05   7.52283973e-06   6.20258601e-06]
143
[ 0.43823666]
[  2.45823829e-04  -2.38227675e-05   1.46163895e-06]
144
[ 0.23260205]
[  1.68627007e-04  -2.86704872e-05  -9.16430787e-06]
145
[ 0.06172766]
[  2.42375993e-05  -4.70090685e-05   1.17683318e-05]
146
[ 0.28055147]
[  2.14308546e-04   1.25562431e-05   2.25199287e-05]
147
[ 0.08798295]
[  8.60140747e-05  -3.02599039e-05  -2.04003846e-05]
148
[ 0.12615959]
[ -1.40385750e-04  -4.61556891e-06  -2.75848686e-05]
149
[ 0.08047527]
[ -8.11421193e-05  -6.21242508e-05  -3.38235640e-06]
150
[ 0.25080666]
[  1.60836311e-04  -3.69328507e-05   1.21511464e-06]
151
[ 0.26349221]
[  1.77711525e-04  -1.58975241e-05  -1.09500555e-05]
152
[ 0.06129125]
[ -5.76083457e-06   4.64536102e-05  -1.45268719e-05]
153
[ 0.42744851]
[  2.38559668e-04   1.09975547e-05  -1.32701406e-05]
154
[ 0.263928]
[  1.81520688e-04  -6.45943440e-06  -5.66530812e-06]
155
[ 0.04824438]
[ -7.11769481e-05   9.69932747e-06   9.88755830e-06]
156
[ 0.02058533]
[ -5.00152773e-05  -8.55408868e-06   7.06072874e-06]
157
[ 0.05962247]
[ -1.64809964e-05   5.47029623e-05   3.32692855e-05]
158
[ 0.09427585]
[  7.20439807e-05  -3.48533438e-05   1.11846654e-05]
159
[ 0.03526692]
[  4.19980411e-05  -2.23612267e-05   6.49021478e-06]
160
[ 0.21617321]
[  1.07280052e-04  -5.57520676e-05   7.35787549e-06]
161
[ 0.3066178]
[  1.66216001e-04  -3.48773251e-05  -8.88767683e-06]
162
[ 0.04502166]
[ -5.87039446e-05  -3.42072893e-05   5.58300313e-06]
163
[ 0.11374183]
[ -1.12566486e-04  -1.74073916e-05   1.55556089e-05]
164
[ 0.12833449]
[  1.21673229e-04  -3.72642016e-06   1.10258804e-06]
165
[ 0.03517843]
[  5.59564672e-05  -9.24341143e-06  -9.91942174e-06]
166
[ 0.10265795]
[  2.98262852e-05  -5.49039064e-05   8.19956307e-06]
167
[ 0.06274275]
[ -6.34112536e-05  -1.23391272e-05   2.97316495e-05]
168
[ 0.13560843]
[  1.04224881e-04  -2.51821973e-05  -6.32458253e-06]
169
[ 0.24000485]
[ -1.63916102e-04   4.39536269e-06  -1.41933992e-05]
170
[ 0.00342451]
[  1.79422688e-05   4.13463528e-06   1.30829586e-05]
171
[ 0.1172402]
[ -1.05320549e-04   7.47410421e-06   1.05633550e-05]
172
[ 0.06110958]
[ -8.04757366e-05  -9.45052228e-07   3.27028230e-06]
173
[ 0.04935865]
[ -7.89642374e-05  -1.22729249e-05  -2.88362860e-05]
174
[ 0.13976125]
[ -1.21533099e-04  -6.74958681e-06   7.33808880e-06]
175
[ 0.10178485]
[  1.01759089e-04   1.57405316e-05  -1.02381258e-05]
176
[ 0.07223163]
[ -2.08356471e-05  -3.71996859e-05   2.58698748e-05]
177
[ 0.05303632]
[ -3.09757746e-05  -3.48223274e-05   1.65505317e-05]
178
[ 0.03018212]
[ -3.19060259e-05   2.34854696e-05   1.26955065e-05]
179
[ 0.22565183]
[  1.56088454e-04   3.14635440e-05  -5.45480149e-06]
180
[ 0.14547768]
[ -1.15116027e-04  -1.79692126e-06   1.59784938e-05]
181
[ 0.06995863]
[  7.14812215e-05  -1.14334581e-05   2.03297535e-05]
182
[ 0.12632738]
[ -1.17616733e-04  -1.50180295e-05  -2.41986152e-06]
183
[ 0.09793109]
[ -3.52410900e-05   4.39859839e-05  -1.27585093e-05]
184
[ 0.07998598]
[  7.88033818e-05  -1.06221765e-05   2.01319342e-05]
185
[ 0.14894474]
[ -1.23220432e-04  -1.77902413e-06  -8.97847824e-06]
186
[ 0.29520602]
[  1.61901597e-04  -1.31451176e-05   1.48457843e-05]
187
[ 0.0568949]
[  6.88579323e-05   2.76258688e-05  -4.61555805e-06]
188
[ 0.2985096]
[ -1.64514696e-04   9.43797245e-06  -2.83772834e-05]
189
[ 0.29883903]
[  1.64667714e-04  -5.70301202e-06   6.81551570e-07]
190
[ 0.24502867]
[ -1.55551455e-04  -7.97369831e-06  -3.85552109e-06]
191
[ 0.13181113]
[ -1.07757323e-04  -4.39421880e-06   1.17212683e-05]
192
[ 0.06059095]
[ -7.11359388e-05   1.82808214e-06   8.41999526e-06]
193
[ 0.05025415]
[  6.74043396e-05   2.70240270e-05   1.78185160e-06]
194
[ 0.22372626]
[  1.20898350e-04  -2.62348461e-05   4.35701071e-06]
195
[ 0.15186818]
[  9.40845462e-05  -2.54807983e-05   5.96386332e-06]
196
[ 0.13370732]
[  9.34110392e-05  -1.80905695e-05   1.19855014e-05]
197
[ 0.15847268]
[ -1.11651907e-04   4.34980582e-06   3.59673516e-06]
198
[ 0.07050278]
[  6.87881864e-05  -2.09379545e-06  -1.17951888e-05]
199
[ 0.06197565]
[  2.36537684e-05  -3.65445869e-05  -7.03715108e-06]
200
[ 0.2471598]
[ -1.40363225e-04  -7.20698757e-06  -2.37259863e-06]
201
[ 0.02669601]
[  2.27888322e-05  -1.42893608e-05   1.24391696e-05]
202
[ 0.16855381]
[  1.07610499e-04  -6.75105871e-06   1.05753318e-06]
203
[ 0.1942494]
[ -1.00909172e-04   2.40220233e-05   5.00537639e-06]
204
[ 0.02625314]
[ -2.05797014e-05  -2.79438305e-05  -1.50635085e-06]
205
[ 0.09849768]
[ -7.00528516e-05   1.79352205e-05   2.80411586e-06]
206
[ 0.07300393]
[ -7.04460494e-05  -7.62055515e-06   8.83094650e-06]
207
[ 0.18768151]
[  9.50868433e-05  -2.60738334e-05  -3.34068045e-07]
208
[ 0.00526215]
[  1.59086404e-05  -1.73543011e-06  -5.37748567e-06]
209
[ 0.05249662]
[ -4.81456692e-05   8.40622458e-06   1.77684743e-05]
210
[ 0.22880239]
[  1.18652931e-04  -2.56074259e-06  -9.38117301e-06]
211
[ 0.11855961]
[  9.63689376e-05   1.31133100e-05   1.19206816e-05]
212
[ 0.28958249]
[ -1.17944415e-04   2.56317103e-05   5.87945782e-06]
213
[ 0.04358841]
[ -1.23407381e-05   2.85872785e-05  -3.66484511e-07]
214
[ 0.05276112]
[  5.51745514e-05  -3.47377821e-06  -3.92699124e-06]
215
[ 0.27144101]
[ -1.34851797e-04  -1.49642394e-06  -1.46111697e-05]
216
[ 0.10947212]
[  8.82345660e-05   7.65650317e-06   9.37262162e-06]
217
[ 0.23759815]
[  1.10651554e-04  -1.66477099e-05   5.98786839e-06]
218
[ 0.08520428]
[  6.55497060e-05  -1.01285206e-05  -1.80086562e-06]
219
[ 0.18962436]
[  9.41656680e-05  -1.88947671e-05   1.32843920e-06]
220
[ 0.10497078]
[  5.99918340e-05  -2.31334995e-05  -6.70651002e-06]
221
[ 0.25127199]
[ -1.28009233e-04  -1.59010839e-05  -9.08351426e-06]
222
[ 0.01280743]
[  3.01504825e-05   5.39061453e-06   8.18694348e-06]
223
[ 0.01517352]
[  1.31567492e-05   1.80974567e-05   2.81954894e-07]
224
[ 0.04272395]
[  2.09968283e-05  -1.64722263e-05   1.40230966e-05]
225
[ 0.0436368]
[ -3.61866794e-05   1.03341575e-05  -1.25585586e-05]
226
[ 0.00632675]
[  3.73134473e-06  -6.38554798e-06   6.93706439e-06]
227
[ 0.00282309]
[ -1.09432079e-05   1.79245517e-06   3.94650156e-07]
228
[ 0.18785337]
[ -8.60830751e-05   1.53123469e-05  -4.33288902e-06]
229
[ 0.09411198]
[ -4.44674257e-05   2.26687057e-05  -4.88087016e-06]
230
[ 0.13256279]
[ -8.71129212e-05  -1.87446527e-05  -7.49893558e-06]
231
[ 0.0042214]
[  1.38088575e-05   7.27967917e-07   6.15247980e-06]
232
[ 0.15574683]
[ -7.51405404e-05   1.44715917e-05  -6.15761640e-06]
233
[ 0.02864767]
[  3.49361013e-05   1.39127338e-06  -5.45475759e-06]
234
[ 0.02543922]
[  2.62624427e-05  -8.39725372e-06  -8.38193553e-06]
235
[ 0.02936068]
[  4.15948107e-05   1.46974448e-05   9.02091142e-06]
236
[ 0.03294978]
[  2.31601440e-05  -1.56907750e-05  -7.56351975e-06]
237
[ 0.13152083]
[  7.09051271e-05  -4.15025893e-06  -1.00385323e-05]
238
[ 0.02028992]
[ -2.75453409e-05  -1.61809124e-07  -1.23347142e-05]
239
[ 0.01733595]
[  2.07518399e-06  -1.84414486e-05  -1.05772961e-05]
240
[ 0.05334778]
[ -5.02237800e-05  -2.37483078e-06  -7.04035875e-06]
241
[ 0.03547204]
[  2.94376005e-05  -7.54559069e-06   1.09055469e-05]
242
[ 0.01974475]
[ -2.37420225e-05  -6.11225024e-08  -1.54427390e-05]
243
[ 0.07145223]
[  5.43362024e-05   7.32883613e-06  -5.01553269e-06]
244
[ 0.04124139]
[ -2.63168320e-05  -1.93805059e-05   6.37580034e-06]
245
[ 0.10064361]
[  5.67530961e-05  -6.90874855e-06  -9.88688141e-06]
246
[ 0.02691458]
[ -1.44511168e-05  -1.18170434e-05   1.07893944e-05]
247
[ 0.02717622]
[  3.04394523e-05  -3.70100707e-07  -4.24225812e-06]
248
[ 0.01095155]
[ -5.83907233e-06  -1.50302647e-05  -1.38562917e-05]
249
[ 0.01721388]
[ -1.28659541e-06   1.41039330e-05  -8.12829228e-07]
250
[ 0.00648424]
[  5.23617422e-06  -7.95584644e-06  -4.18012459e-06]
251
[ 0.01658143]
[  2.28042288e-05   9.09640596e-06   2.03590602e-06]
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:95: RuntimeWarning: invalid value encountered in divide
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:96: RuntimeWarning: invalid value encountered in divide
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:97: RuntimeWarning: invalid value encountered in divide
19
[ 0.4056167]
[  6.48343138e-04  -7.03993953e-05   4.06749718e-05]
25
[ 0.05029531]
[ -2.33550676e-04  -2.00730292e-05   1.94575456e-06]
40
[ 0.31756874]
[  3.99173222e-04  -8.13175682e-05   2.95372776e-05]
89
[ 0.13627593]
[  1.54548266e-04  -5.09394864e-05   1.71470507e-05]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 19, 25, 40, 89]

In [ ]:
plt.plot(Xkdff.T)

In [148]:
if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

C=np.zeros((S[3],3))
i=1
l=0



for j in range(S[3]):  
    if Label_ICs[j]=='a' and TimeCCMax[j]>0 and TimeCCMax[j]<0.3:
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,0]=1
        C[j,1]=1-6*TimeCCMax[j]

        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.4*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas2[1,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        print(j+1)
        print(C[j,:])
        #if l==2:
         #   break

for j in range(S[3]):  

    if Label_ICs[j]=='a' and TimeCCMax[j]<0 and TimeCCMax[j]>-0.3:
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        #print(j+1)
        C[j,2]=1
        C[j,1]=1+3*TimeCCMax[j]
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.4*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas[0,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        print(j+1)
        print(C[j,:])
        #if l==2:
            #break
    

C=np.zeros((S[3],3))
i=1
l=0            
            
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/70
    #Df=Df/(np.max(np.max(np.max(Df),3)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)


4
[ 1.    0.46  0.  ]
9
[ 1.    0.52  0.  ]
10
[ 1.   0.7  0. ]
11
[ 1.   -0.02  0.  ]
12
[ 1.   0.7  0. ]
14
[ 1.   0.4  0. ]
16
[ 1.   0.4  0. ]
18
[ 1.   -0.62  0.  ]
19
[ 1.    0.34  0.  ]
21
[ 1.    0.04  0.  ]
22
[ 1.   -0.68  0.  ]
23
[ 1.   -0.32  0.  ]
24
[ 1.    0.58  0.  ]
31
[ 1.   -0.08  0.  ]
32
[ 1.   -0.32  0.  ]
33
[ 1.    0.58  0.  ]
37
[ 1.    0.88  0.  ]
39
[ 1.    0.82  0.  ]
41
[ 1.    0.64  0.  ]
49
[ 1.    0.34  0.  ]
50
[ 1.    0.34  0.  ]
54
[ 1.    0.58  0.  ]
57
[ 1.   0.1  0. ]
58
[ 1.    0.22  0.  ]
59
[ 1.    0.64  0.  ]
60
[ 1.   -0.02  0.  ]
66
[ 1.   -0.14  0.  ]
75
[ 1.    0.58  0.  ]
76
[ 1.    0.82  0.  ]
77
[ 1.    0.16  0.  ]
81
[ 1.    0.94  0.  ]
88
[ 1.   0.7  0. ]
90
[ 1.   0.7  0. ]
91
[ 1.    0.64  0.  ]
97
[ 1.    0.34  0.  ]
102
[ 1.    0.58  0.  ]
105
[ 1.   0.7  0. ]
106
[ 1.    0.58  0.  ]
108
[ 1.    0.94  0.  ]
114
[ 1.    0.46  0.  ]
120
[ 1.    0.64  0.  ]
122
[ 1.    0.64  0.  ]
126
[ 1.    0.52  0.  ]
128
[ 1.    0.58  0.  ]
129
[ 1.   0.7  0. ]
130
[ 1.    0.58  0.  ]
138
[ 1.    0.58  0.  ]
143
[ 1.    0.76  0.  ]
146
[ 1.    0.34  0.  ]
159
[ 1.   0.4  0. ]
160
[ 1.    0.16  0.  ]
163
[ 1.   0.4  0. ]
165
[ 1.   0.7  0. ]
167
[ 1.    0.28  0.  ]
171
[ 1.    0.52  0.  ]
185
[ 1.   -0.14  0.  ]
219
[ 1.    0.46  0.  ]
224
[ 1.    0.52  0.  ]
228
[ 1.    0.16  0.  ]
235
[ 1.    0.52  0.  ]
8
[ 0.    0.67  1.  ]
17
[ 0.    0.91  1.  ]
20
[ 0.    0.94  1.  ]
73
[ 0.    0.76  1.  ]
80
[ 0.    0.97  1.  ]
92
[ 0.    0.43  1.  ]
94
[ 0.    0.82  1.  ]
135
[ 0.    0.88  1.  ]
136
[ 0.   0.4  1. ]
168
[ 0.    0.49  1.  ]

In [ ]: