In [18]:
import numpy as np
# Set numpy to print only 2 decimal digits for neatness
np.set_printoptions(precision=2, suppress=True)
import os
import nibabel as nb
from nibabel.testing import data_path

In [2]:
from nilearn import image

In [3]:
img1 = nib.load('/home/sophie/Documents/100411ss2on.nii.gz')
img2 = nib.load('/home/sophie/Documents/100412ss2on.nii.gz')

In [4]:
img2


Out[4]:
<nibabel.nifti1.Nifti1Image at 0x7fc8e5a3b4d0>

In [13]:
img1c = image.crop_img(img2, rtol=1e-01, copy=True)

In [14]:
img1c


Out[14]:
<nibabel.nifti1.Nifti1Image at 0x7fc8e5a2be10>

In [15]:
nib.save(img1c, '/home/sophie/Documents/100412ss2onc.nii.gz')

In [ ]:
filename1 = '/home/sophie/Documents/100411ss2on.nii.gz'
img1 = nb.load(filename1)
data = img1.get_data()
S=data.shape

In [ ]:


In [ ]:
MeanImage=np.sum(data(:,:,:,1),2)
for x in 1:100
    for y in 1:200
    F(x,y)=sum(sum(MeanImage(x:x+180,y:y+140)))

[Id,M]=max(F)