In [1]:
clear all




In [2]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
import scipy.io as sio
%matplotlib inline 
import pylab
import csv
from Tkinter import Tk
from tkFileDialog import askopenfilename
from tkFileDialog import askdirectory
import nibabel as nb
from scipy import io
import nibabel as nb
from scipy.interpolate import interp1d
from scipy import ndimage

In [3]:
from sklearn import linear_model

Open data


In [4]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/sophie/db554c18-e3eb-41e2-afad-7de1c92bf4a5/panNeuronalGCaMP62/FreeBehavior/100148/100148ss2it30/100148Final/100148ss2onc500regcdFF40sMpsfkfint300Smith0_4_60TS.mat

In [5]:
Ua=sio.loadmat(filename)
DT=Ua['TSo']
DT.shape


Out[5]:
(11603, 300)

In [6]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)


/media/sophie/db554c18-e3eb-41e2-afad-7de1c92bf4a5/panNeuronalGCaMP62/FreeBehavior/100148/100148ss2it30/100148Final/100148ss2onc500regcdFF40sMpsfkfint300Smith0_4_60IC.nii

In [7]:
img1 = nb.load(filename2)
data = img1.get_data()
S=data.shape
S


Out[7]:
(181, 109, 9, 300)

Z-score


In [8]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])

In [9]:
for i in range(S[3]):
    Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)

In [10]:
for i in range(S[3]):
    Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
    Var[i]=np.sqrt(np.var(Dsq))
    Dvar=Demean[:,:,:,i]/Var[i]
    Dmaps[:,:,:,i]=Dvar-2
    Tvar[i]=np.var(DT[i,:])
Dmaps[Dmaps<0]=0

In [11]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/sophie/db554c18-e3eb-41e2-afad-7de1c92bf4a5/panNeuronalGCaMP62/FreeBehavior/100148/100148ss2it30/100148Final/100148XkV2.mat

In [12]:
Ua=sio.loadmat(filename)
Xk=Ua['Xk']

In [23]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenamet = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenamet)
nimt=nb.load(filenamet)
Dtemp=np.squeeze(nimt.get_data())
Dtemp.shape


/media/sophie/db554c18-e3eb-41e2-afad-7de1c92bf4a5/panNeuronalGCaMP62/FreeBehavior/100148/100148ss2it30/AVG_100148ss2onc500regcpsf.nii
Out[23]:
(181, 109, 9)

Fit turns


In [24]:
%%javascript
IPython.OutputArea.auto_scroll_threshold =4000;



In [25]:
if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    D1=np.zeros([S[0],S[1],Nstack])
    Dmean=np.squeeze(data[:,:,range(Nstack),2])
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        Dmean[:,:,i]=Vmean
else:
    Nstack=S[2]
    D1=np.zeros([S[0],S[1],S[2]])
    Dmean=data[:,:,range(S[2])]  
    Dmean=np.squeeze(Dtemp[:,:,:])

In [26]:
for j in range(S[3]):

    a=''
    if S[2]>5:
        for i in range(Nstack):
            V=Dmaps[:,:,Indices[i],j]
            D1[:,:,i]=np.max(V,2)
        D2[:,:,:,j]=D1
        D1[D1==0]=np.nan

In [27]:
plt.imshow(Dmean[:,:,1],cmap=plt.cm.gray)


Out[27]:
<matplotlib.image.AxesImage at 0x7f1d2a7e3a10>

In [28]:
my_cmap=plt.cm.jet
my_cmap.set_bad(alpha=0)
Good_ICs=np.zeros(S[3])
Label_ICs=[]
pylab.rcParams['figure.figsize'] = (15, 2.5)

In [29]:
algorithm = linear_model.LinearRegression()

In [30]:
Sxk=Xk.shape

In [31]:
Sxk


Out[31]:
(11603, 8)

In [32]:
X=np.zeros((Sxk[0],2))

In [33]:
X[:,0]=(Xk[:,0]-np.mean(Xk[:,0]))/np.std(Xk[:,0])
X[:,1]=(Xk[:,1]-np.mean(Xk[:,1]))/np.std(Xk[:,1])
#X[:,2]=(Xk[:,3]-np.mean(Xk[:,3]))/np.std(Xk[:,3])
#X[:,3]=(Xk[:,4]-np.mean(Xk[:,4]))/np.std(Xk[:,4])
#X[:,4]=(Xk[:,6]-np.mean(Xk[:,6]))/np.std(Xk[:,6])
#X[:,5]=(Xk[:,7]-np.mean(Xk[:,7]))/np.std(Xk[:,7])

In [34]:
plt.plot(X[:,0])
plt.plot(X[:,1])
#plt.plot(X[:,2])
#plt.plot(X[:,3])
#plt.plot(X[:,4])
#plt.plot(X[:,5])


Out[34]:
[<matplotlib.lines.Line2D at 0x7f1d2a723ed0>]

Plot all components for turning left, right, walking, and grooming


In [35]:
Rsq=np.zeros((1,S[3]))
Betas=np.zeros((2,S[3]))

In [36]:
X.shape


Out[36]:
(11603, 2)

In [37]:
DT.shape


Out[37]:
(11603, 300)

In [38]:
for j in range(S[3]):
    model = algorithm.fit(X, DT[:,j])
    Betas[:,j] = model.coef_
    Rsq[:,j] = model.score(X,DT[:,j])

In [39]:
RsqUni=np.zeros((6,S[3]))
BetaUni=np.zeros((6,S[3]))

In [40]:
Sx=X.shape

In [41]:
for k in range(2):
    for j in range(S[3]):
        model = algorithm.fit(np.reshape(X[:,k],(Sx[0],1)), DT[:,j])
        BetaUni[k,j] = model.coef_
        RsqUni[k,j] = model.score(np.reshape(X[:,k],(Sx[0],1)),DT[:,j])

In [42]:
plt.plot(RsqUni[0,:])


Out[42]:
[<matplotlib.lines.Line2D at 0x7f1d2a543a90>]

In [43]:
import random

In [49]:
del Final_map
del Fmaps


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-49-afdbaf60a348> in <module>()
----> 1 del Final_map
      2 del Fmaps

NameError: name 'Final_map' is not defined

In [44]:
if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

In [45]:
C=np.zeros((S[3],3))
i=0
l=0
Betas2=Betas
for j in range(S[3]):  
    if Betas2[0,j]>0.7*np.max(Betas2[0,:]):
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,2]=1
        C[j,1]=random.uniform(0,1)
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            print(M)
            Fmaps[:,:,:,k]=0.8*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas[0,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        #if l==2:
            #break


39.9151842124
39.9151842124
39.9151842124
15.1545448426
15.1545448426
15.1545448426
25.0448341177
25.0448341177
25.0448341177
21.8412209627
21.8412209627
21.8412209627

In [46]:
C=np.zeros((S[3],3))
i=0
l=0
Betas2=Betas
for j in range(S[3]):  
    if Betas2[1,j]>0.7*np.max(Betas2[1,:]):
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,0]=1
        C[j,1]=random.uniform(0,1)
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.8*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas2[1,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        #if l==2:
         #   break

In [47]:
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/30
    #Df=Df/(np.max(np.max(np.max(Df),3)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)



In [ ]: