In [1]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
import scipy.io as sio
%matplotlib inline 
import pylab
import csv
from Tkinter import Tk
from tkFileDialog import askopenfilename
from tkFileDialog import askdirectory
import nibabel as nb
from scipy import io
#from nifti import NiftiImage
import nibabel as nb
from scipy.interpolate import interp1d
from scipy import ndimage

Open data


In [2]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/sophie/008C0665790F0763/ComboPanNeuronalGCaMP6/40x/964/964/964ss1cregcU7sMpsfkf250Smith0_4_60TS.mat

In [3]:
Ua=sio.loadmat(filename)
DT=Ua['TSo']
DT.shape


Out[3]:
(6127, 250)

In [4]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)


/media/sophie/008C0665790F0763/ComboPanNeuronalGCaMP6/40x/964/964/964ss1cregcU7sMpsfkf250Smith0_4_60IC.nii

In [5]:
img1 = nb.load(filename2)
data = img1.get_data()
S=data.shape
S


Out[5]:
(101, 88, 11, 250)

In [6]:
S=data.shape
S


Out[6]:
(101, 88, 11, 250)

Z-score


In [7]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])

In [8]:
for i in range(S[3]):
    Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)

In [9]:
for i in range(S[3]):
    Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
    Var[i]=np.sqrt(np.var(Dsq))
    Dvar=Demean[:,:,:,i]/Var[i]
    Dmaps[:,:,:,i]=Dvar-2.5
    Tvar[i]=np.var(DT[i,:])
Dmaps[Dmaps<0]=0

Open Masks


In [17]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenameM = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenameM)
img1 = nb.load(filenameM)
Masks = img1.get_data()
Sm=Masks.shape
Masks=np.array(Masks)


/media/sophie/008C0665790F0763/ComboPanNeuronalGCaMP6/40x/964/964registration/JFRCTransformedLargefullpsftrimmed.nii

In [18]:
filenameM='/home/sophie/LargeRegionList'
with open(filenameM) as f:
    content = f.readlines()
Names=[Line.replace('\n','').split(' ') for Line in content]
RegionName=[Names[i][1] for i in range(12)]
Num=[int(Names[i][0]) for i in range(12)]

In [19]:
RegionName


Out[19]:
['OL',
 'VLNP',
 'VMNP',
 'AL',
 'MB',
 'LH',
 'SNP',
 'CX',
 'LX',
 'INP',
 'PENP',
 'GNG']

Average in masks to sort components by brain region


In [20]:
Dmaps.shape


Out[20]:
(101, 88, 11, 250)

In [21]:
M=np.zeros((S[3],13))
Mapmean=np.zeros(S[3])
MMasks=np.zeros(13)

In [22]:
for i in range(S[3]):
    Mapmean[i]=np.mean(np.mean(np.mean(Dmaps[:,:,:,i])))
    for j in range(12):
        MMasks[j]=np.mean(np.mean(np.mean(Masks[:,:,:,j])))
        if MMasks[j]:
            M[i,j]=np.mean(np.mean(np.mean(Masks[:,:,:,j]*Dmaps[:,:,:,i])))/(MMasks[j]*Mapmean[i])

In [23]:
CompMainName=S[3]*['']
CompNameAdd=np.zeros((S[3],12))
for i in range(S[3]):
    Max=np.max(M[i,:])
    I=np.argmax(M[i,:])+1
    for j in range(12):
        J=[l for l in range(12) if Num[l]==(j+1)]
        if M[i,j]>0.2*Max:
            CompNameAdd[i,J]=1
    J=[l for l in range(12) if Num[l]==I]
    if J!= []:
        CompMainName[i]=Names[np.array(J)][0]


/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:12: VisibleDeprecationWarning: converting an array with ndim > 0 to an index will result in an error in the future

In [24]:
J


Out[24]:
[7]

In [25]:
pylab.rcParams['figure.figsize'] = (13, 2.5)

h=5
tot=0
GoodICAnat=np.zeros(S[3])

for l in range(12):
    Final_maps=np.zeros((S[0],S[1],3))
    Fmap=np.zeros((S[0],S[1],3))
    C=np.zeros(3)

    n=0
    for i in range(len(CompMainName)):                    
        Dmmv=np.mean(data[:,:,:,i],2) 
        Dmmv[Dmmv<0.2*np.max(np.max(np.max(Dmmv)))]=0
        C=np.squeeze(np.random.rand(3,1))
        labeled, nrobject=ndimage.label(Dmmv>0)
        
        if CompMainName[i]==Names[l][0] and (sum(CompNameAdd[i,:])<5) and nrobject<200:
            n=n+1            
            
            for k in range(3):
                Fmap[:,:,k]=0.7*Dmmv*C[k]/np.max(C)
            Final_maps=Final_maps+Fmap
            #plt.plot(Time_fluoICA.T,(DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)
            plt.plot((DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)
            tot=tot+1
            GoodICAnat[i]=1
            
                    
    if n!=0:
        print(RegionName[l])
        plt.show()
        FM=Final_maps/np.max(np.max(Final_maps))
        FM[FM<0.1]=0
        plt.imshow(FM,interpolation='none')
        plt.show()
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)


OL
VLNP
VMNP
AL
MB
LH
SNP
CX
LX
INP
PENP
GNG
Looked at the components maps and time series and remove all the components which are localized on the edge of the brain and with activity unlike GCaMP6 transients.

In [26]:
BadICs=[]

In [27]:
for idx in BadICs:
    GoodICAnat[idx] = 0.0

In [28]:
pylab.rcParams['figure.figsize'] = (13, 2.5)

h=5
tot=0
NumberInLargeRegion=np.zeros(13)

for l in range(12):
    Final_maps=np.zeros((S[0],S[1],3))
    Fmap=np.zeros((S[0],S[1],3))
    C=np.zeros(3)

    n=0
    for i in range(len(CompMainName)):                    
        Dmmv=np.mean(data[:,:,:,i],2) 
        Dmmv[Dmmv<0.2*np.max(np.max(np.max(Dmmv)))]=0
        C=np.squeeze(np.random.rand(3,1))
        labeled, nrobject=ndimage.label(Dmmv>0)
        
        if CompMainName[i]==Names[l][0] and (sum(CompNameAdd[i,:])<5) and nrobject<200 and GoodICAnat[i]==1:
            n=n+1            
            
            for k in range(3):
                Fmap[:,:,k]=0.7*Dmmv*(C[k]+0.2)/np.max(C+0.2)
            Final_maps=Final_maps+Fmap
            #plt.plot(Time_fluoICA.T,(DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)
            plt.plot((DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)
            tot=tot+1
            GoodICAnat[i]=1
            print(i)
                    
    if n!=0:
        print(RegionName[l])
        plt.show()
        FM=Final_maps/np.max(np.max(Final_maps))
        FM[FM<0.1]=0
        plt.imshow(FM,interpolation='none')
        plt.show()
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
                
    NumberInLargeRegion[l]=n


33
48
49
73
84
91
93
96
101
117
124
129
138
140
142
161
168
188
194
242
OL
27
57
61
66
83
88
95
113
126
148
150
175
176
205
209
229
236
VLNP
9
14
47
50
51
56
58
69
70
79
80
89
94
118
119
130
137
146
157
169
198
208
VMNP
3
4
11
17
18
19
24
25
35
40
42
86
131
145
152
154
231
AL
0
1
2
5
7
10
16
20
21
22
23
31
32
36
39
43
45
64
65
72
75
90
100
104
107
114
122
159
162
166
180
187
195
196
219
245
247
MB
8
15
29
135
207
213
LH
87
102
115
164
171
172
189
190
202
211
212
214
216
226
239
SNP
12
30
37
38
44
52
53
67
71
92
99
105
111
116
121
136
147
151
155
158
167
177
181
199
220
225
230
233
235
238
243
CX
62
68
78
97
165
LX
6
13
26
28
41
77
85
103
112
120
134
144
153
173
182
185
186
192
INP
133
141
232
PENP
54
63
81
82
191
GNG

In [29]:
# Output number of component per region
np.savetxt('/'.join(filename.split('/')[:-1])+'/NumberInLargeRegionsV2.txt',NumberInLargeRegion)

In [ ]: