In [1]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
import scipy.io as sio
%matplotlib inline 
import pylab
import csv
from Tkinter import Tk
from tkFileDialog import askopenfilename
from tkFileDialog import askdirectory
import nibabel as nb
from scipy import io
import nibabel as nb
from scipy.interpolate import interp1d
from scipy import ndimage

In [2]:
from sklearn import linear_model

Open data


In [4]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/sophie/db554c18-e3eb-41e2-afad-7de1c92bf4a5/THDDCGCaMP62/100135/100135ss2oncregcdFF20skf99Smith0_4_60TSint.mat

In [8]:
Ua=sio.loadmat(filename)
DT=Ua['TS2']
DT.shape


Out[8]:
(11168, 99)

In [9]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)


/media/sophie/db554c18-e3eb-41e2-afad-7de1c92bf4a5/THDDCGCaMP62/100135/100135ss2oncregcdFF20skf99Smith0_4_60IC.nii

In [10]:
img1 = nb.load(filename2)
data = img1.get_data()
S=data.shape
S


Out[10]:
(138, 83, 26, 99)

Z-score


In [11]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])

In [12]:
for i in range(S[3]):
    Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)

In [13]:
for i in range(S[3]):
    Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
    Var[i]=np.sqrt(np.var(Dsq))
    Dvar=Demean[:,:,:,i]/Var[i]
    Dmaps[:,:,:,i]=Dvar-2
    Tvar[i]=np.var(DT[i,:])
Dmaps[Dmaps<0]=0

In [14]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/sophie/db554c18-e3eb-41e2-afad-7de1c92bf4a5/THDDCGCaMP62/100135/100135Final/100135Xk.mat

In [15]:
Ua=sio.loadmat(filename)
Xk=Ua['Xk']

In [16]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenamet = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenamet)
nimt=nb.load(filenamet)
Dtemp=np.squeeze(nimt.get_data())
Dtemp.shape


/media/sophie/db554c18-e3eb-41e2-afad-7de1c92bf4a5/THDDCGCaMP62/100135/100135Final/AVG_100135ss2c500regcdFF20sMpsfkfintminmask.nii
Out[16]:
(137, 87, 7)

Fit turns


In [17]:
%%javascript
IPython.OutputArea.auto_scroll_threshold =4000;



In [18]:
if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    D1=np.zeros([S[0],S[1],Nstack])
    Dmean=np.squeeze(data[:,:,range(Nstack),2])
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        Dmean[:,:,i]=Vmean
else:
    Nstack=S[2]
    D1=np.zeros([S[0],S[1],S[2]])
    Dmean=data[:,:,range(S[2])]  
    Dmean=np.squeeze(Dtemp[:,:,:])


/usr/local/lib/python2.7/dist-packages/numpy/lib/shape_base.py:422: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
  sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-18-7d6a56c72333> in <module>()
      8     for i in range(Nstack):
      9         Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
---> 10         Dmean[:,:,i]=Vmean
     11 else:
     12     Nstack=S[2]

ValueError: could not broadcast input array from shape (137,87) into shape (138,83)

In [19]:
for j in range(S[3]):

    a=''
    if S[2]>5:
        for i in range(Nstack):
            V=Dmaps[:,:,Indices[i],j]
            D1[:,:,i]=np.max(V,2)
        D2[:,:,:,j]=D1
        D1[D1==0]=np.nan

In [20]:
plt.imshow(Dmean[:,:,1],cmap=plt.cm.gray)


Out[20]:
<matplotlib.image.AxesImage at 0x7f74a2025d10>

In [21]:
my_cmap=plt.cm.jet
my_cmap.set_bad(alpha=0)
Good_ICs=np.zeros(S[3])
Label_ICs=[]
pylab.rcParams['figure.figsize'] = (15, 2.5)

In [22]:
algorithm = linear_model.LinearRegression()

In [23]:
Sxk=Xk.shape

In [24]:
Sxk


Out[24]:
(10183, 6)

In [25]:
X=np.zeros((Sxk[0],2))

In [26]:
X[:,0]=(Xk[:,0]-np.mean(Xk[:,0]))/np.std(Xk[:,0])
X[:,1]=(Xk[:,1]-np.mean(Xk[:,1]))/np.std(Xk[:,1])
#X[:,2]=(Xk[:,3]-np.mean(Xk[:,3]))/np.std(Xk[:,3])
#X[:,3]=(Xk[:,4]-np.mean(Xk[:,4]))/np.std(Xk[:,4])
#X[:,4]=(Xk[:,6]-np.mean(Xk[:,6]))/np.std(Xk[:,6])
#X[:,5]=(Xk[:,7]-np.mean(Xk[:,7]))/np.std(Xk[:,7])

In [27]:
plt.plot(X[:,0])
plt.plot(X[:,1])
#plt.plot(np.smooth(X[:,1]-X[:,0]))
#plt.plot(X[:,2])
#plt.plot(X[:,3])
#plt.plot(X[:,4])
#plt.plot(X[:,5])
zero_crossings = np.where(np.diff(np.sign(X[:,1]-X[:,0])))[0]
print(zero_crossings.shape)


(91,)

Plot all components for turning left, right, walking, and grooming


In [28]:
Rsq=np.zeros((1,S[3]))
Betas=np.zeros((2,S[3]))

In [29]:
X.shape


Out[29]:
(10183, 2)

In [30]:
DT.shape


Out[30]:
(11168, 99)

In [31]:
for j in range(S[3]):
    model = algorithm.fit(X, DT[:,j])
    Betas[:,j] = model.coef_
    Rsq[:,j] = model.score(X,DT[:,j])


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-31-d72c820d4d78> in <module>()
      1 for j in range(S[3]):
----> 2     model = algorithm.fit(X, DT[:,j])
      3     Betas[:,j] = model.coef_
      4     Rsq[:,j] = model.score(X,DT[:,j])

/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/base.pyc in fit(self, X, y, sample_weight)
    510         n_jobs_ = self.n_jobs
    511         X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
--> 512                          y_numeric=True, multi_output=True)
    513 
    514         if sample_weight is not None and np.atleast_1d(sample_weight).ndim > 1:

/usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.pyc in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
    529         y = y.astype(np.float64)
    530 
--> 531     check_consistent_length(X, y)
    532 
    533     return X, y

/usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.pyc in check_consistent_length(*arrays)
    179     if len(uniques) > 1:
    180         raise ValueError("Found input variables with inconsistent numbers of"
--> 181                          " samples: %r" % [int(l) for l in lengths])
    182 
    183 

ValueError: Found input variables with inconsistent numbers of samples: [10183, 11168]

In [31]:
RsqUni=np.zeros((6,S[3]))
BetaUni=np.zeros((6,S[3]))

In [32]:
Sx=X.shape

In [33]:
for k in range(2):
    for j in range(S[3]):
        model = algorithm.fit(np.reshape(X[:,k],(Sx[0],1)), DT[:,j])
        BetaUni[k,j] = model.coef_
        RsqUni[k,j] = model.score(np.reshape(X[:,k],(Sx[0],1)),DT[:,j])

In [34]:
plt.plot(RsqUni[0,:])


Out[34]:
[<matplotlib.lines.Line2D at 0x7f431bc1ea50>]

In [35]:
import random

In [36]:
del Final_map
del Fmaps


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-36-afdbaf60a348> in <module>()
----> 1 del Final_map
      2 del Fmaps

NameError: name 'Final_map' is not defined

In [37]:
if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

In [38]:
C=np.zeros((S[3],3))
i=0
l=0
Betas2=Betas
for j in range(S[3]):  
    if Betas2[0,j]>0.85*np.max(Betas2[0,:]):
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,2]=1
        C[j,1]=random.uniform(0,1)
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.8*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas[0,j]=0
        #print(Indexo[j])
        print(j+1)
        i=i+1
        l=l+1
        print(Rsq[:,j])        
        #if l==2:
            #break


13
[ 0.78000589]

In [39]:
C=np.zeros((S[3],3))
i=0
l=0
Betas2=Betas
for j in range(S[3]):  
    if Betas2[1,j]>0.82*np.max(Betas2[1,:]):
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,0]=1
        C[j,1]=random.uniform(0,1)
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.8*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas2[1,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        print(j+1)
        #if l==2:
         #   break


6

In [40]:
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/30
    #Df=Df/(np.max(np.max(np.max(Df),3)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)



In [43]:
del Final_map
del Fmaps

if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

C=np.zeros((S[3],3))
i=1
l=0
Betas2=Betas
for j in range(2,S[3]):  
    if Betas2[0,j]>0.6*np.max(Betas2[0,:]):
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,2]=1
        C[j,1]=1-i/2
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.75*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas[0,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        print(j+1)
        #if l==2:
            #break
    

C=np.zeros((S[3],3))
i=1
l=0
Betas2=Betas
for j in range(2,S[3]):  
    if Betas2[1,j]>0.6*np.max(Betas2[1,:]):
    #if 1>0.1:
        #C[j,:]=C1[i%6][:]
        C[j,0]=1
        C[j,1]=i/2
        #C[j,2]=1
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.75*D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #Betas2[1,j]=0
        #print(Indexo[j])
        i=i+1
        l=l+1
        print(j+1)
        #if l==2:
         #   break

pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/30
    #Df=Df/(np.max(np.max(np.max(Df),3)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)


13
20
6
12

In [ ]: