In [1]:
clear all




In [2]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
import scipy.io as sio
%matplotlib inline 
import pylab
import csv
from Tkinter import Tk
from tkFileDialog import askopenfilename
from tkFileDialog import askdirectory
import nibabel as nb
from scipy import io
import nibabel as nb
from scipy.interpolate import interp1d
from scipy import ndimage

In [3]:
from sklearn import linear_model

Open data


In [4]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/sophie2/100106/100106Final/100106ss2on500cregcdFF20sMpsfkfint169Smith0_4_60TS.mat

In [5]:
Ua=sio.loadmat(filename)
DT=Ua['TSo']
DT.shape


Out[5]:
(10608, 169)

In [6]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename2 = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename2)


/media/sophie2/100106/100106Final/100106ss2on500cregcdFF20sMpsfkfint169Smith0_4_60IC.nii

In [7]:
img1 = nb.load(filename2)
data = img1.get_data()
S=data.shape
S


Out[7]:
(189, 125, 10, 169)

In [8]:
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)




In [9]:
Ua=sio.loadmat(filename)
Time_fluo=Ua['TimeFluoOn']
Time_fluo.shape


Out[9]:
(1, 3582)

In [9]:
Time_fluoICA=Time_fluo[:,501:6346]

In [10]:
Time_fluoICA.shape


Out[10]:
(1, 5845)

In [9]:
Time_fluoICA=np.array(range(10608))*0.01

Z-score


In [10]:
Demean=np.zeros(S)
Dmaps=np.zeros(S)
Dvar=np.zeros(S)
Var=np.zeros(S[3])
D2=np.zeros([S[0],S[1],5,S[3]])
Tvar=np.zeros(S[3])

In [11]:
for i in range(S[3]):
    Demean[:,:,:,i]=data[:,:,:,i]-np.mean(np.mean(np.mean(data[:,:,:,i],0),0),0)

In [12]:
for i in range(S[3]):
    Dsq=np.reshape(Demean[:,:,:,i],S[0]*S[1]*S[2])
    Var[i]=np.sqrt(np.var(Dsq))
    Dvar=Demean[:,:,:,i]/Var[i]
    Dmaps[:,:,:,i]=Dvar-2
    Tvar[i]=np.var(DT[i,:])
Dmaps[Dmaps<0]=0

In [30]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filename)


/media/sophie2/100106/100106Final/100106Xk.mat

In [31]:
Ua=sio.loadmat(filename)
Xk=Ua['Xk'].T

In [32]:
Xk.shape


Out[32]:
(5, 10608)

Open Masks


In [17]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenameM = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenameM)
img1 = nb.load(filenameM)
Masks = img1.get_data()
Sm=Masks.shape
Masks=np.array(Masks)


/home/sophie/Downloads/JFRC100106Transformedfullpsftrimmed.nii

In [18]:
filenameM='/home/sophie/Downloads/RegionList'
with open(filenameM) as f:
    content = f.readlines()
Names=[Line.split('\t') for Line in content]
RegionName=[Names[i][0] for i in range(75)]
Num=[int(Names[i][2]) for i in range(75)]

Average in masks to sort components by brain region


In [19]:
Dmaps.shape


Out[19]:
(189, 125, 10, 169)

In [20]:
M=np.zeros((S[3],86))
Mapmean=np.zeros(S[3])
MMasks=np.zeros(86)

In [21]:
for i in range(S[3]):
    Mapmean[i]=np.mean(np.mean(np.mean(Dmaps[:,:,:,i])))
    for j in range(86):
        MMasks[j]=np.mean(np.mean(np.mean(Masks[:,:,:,j])))
        if MMasks[j]:
            M[i,j]=np.mean(np.mean(np.mean(Masks[:,:,:,j]*Dmaps[:,:,:,i])))/(MMasks[j]*Mapmean[i])

In [22]:
CompMainName=S[3]*['']
CompNameAdd=np.zeros((S[3],86))
for i in range(S[3]):
    Max=np.max(M[i,:])
    I=np.argmax(M[i,:])+1
    for j in range(86):
        J=[l for l in range(74) if Num[l]==(j+1)]
        if M[i,j]>0.2*Max:
            CompNameAdd[i,J]=1
    J=[l for l in range(75) if Num[l]==I]
    CompMainName[i]=Names[np.array(J)][0]


/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:11: VisibleDeprecationWarning: converting an array with ndim > 0 to an index will result in an error in the future

In [23]:
Time_fluoICA.shape


Out[23]:
(10608,)

In [27]:
Xk.shape


Out[27]:
(5, 10608)

In [33]:
pylab.rcParams['figure.figsize'] = (13, 2.5)

h=5
tot=0
GoodICAnat=np.zeros(S[3])

for l in range(74):
    Final_maps=np.zeros((S[0],S[1],3))
    Fmap=np.zeros((S[0],S[1],3))
    C=np.zeros(3)

    n=0
    for i in range(len(CompMainName)):                    
        Dmmv=np.mean(data[:,:,:,i],2) 
        Dmmv[Dmmv<0.2*np.max(np.max(np.max(Dmmv)))]=0
        C=np.squeeze(np.random.rand(3,1))
        labeled, nrobject=ndimage.label(Dmmv>0)
        
        if CompMainName[i]==Names[l][0] and (sum(CompNameAdd[i,:])<5) and nrobject<200:
            n=n+1            
            
            for k in range(3):
                Fmap[:,:,k]=0.7*Dmmv*C[k]/np.max(C)
            Final_maps=Final_maps+Fmap
            plt.plot(Time_fluoICA.T,(DT[:,i]/np.sqrt(np.var(DT[:,i]))-h*n+2),color=C/2)        
            tot=tot+1
            GoodICAnat[i]=1
            #print(i)
            for j in range(86):
                if CompNameAdd[i,j]==1:                
                    print(Names[np.array(j)][0])
            print(i)
           
    plt.plot(Time_fluoICA.T[range(10607)],np.diff(Xk[0,:])/1000+2,color=(1,0,0))
    plt.plot(Time_fluoICA.T[range(10607)],np.diff(Xk[1,:])/1000+2,color=(0,1,0)) 
    plt.plot(Time_fluoICA.T,Xk[0,:]/8000+2,color=(1,0,1))
    #plt.plot(Time_fluoICA.T[range(3213)],np.diff(3*(Xk[:,0]-Xk[:,1])/np.max(Xk[:,0]-Xk[:,1]))*50,color=(1,0,0))   
    #plt.plot(Time_fluoICA.T,2*Xk[:,4]/np.max(Xk[:,4])+2,color=(1,0,0))
    #plt.plot(Time_fluoICA.T,2*Xk[:,2]/np.max(Xk[:,2])+1.5,color=(1,0,1))    
    if n!=0:
        print(Names[l][1])

        plt.show()
        FM=Final_maps/np.max(np.max(Final_maps))
        FM[FM<0.1]=0
        plt.imshow(FM,interpolation='none')
        plt.show()
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
        
# Open template


AME_R
LO_R
BU_R
28
AME_R
90
accessory medulla
LO_R
ATL_R
PVLP_R
41
LO_R
PB
ME_R
42
LO_R
51
LO_R
61
LO_R
ME_R
66
AME_R
LO_R
BU_R
LOP_R
70
LO_R
80
LO_R
NO
MB_CA_R
VES_L
117
LO_R
BU_R
ME_R
118
lobula
NO
LOP_L
ME_L
71
nodulus
BU_R
LO_L
LOP_L
64
bulb
PB
ATL_L
14
PB
ATL_R
20
PB
ME_R
111
NO
PB
MB_VL_R
ME_L
138
protocerebral bridge
LH_R
88
LH_R
PVLP_R
120
LH_R
MB_ML_R
SLP_R
157
lateral horn
SAD
AMMC_R
2
antennal mechanosensory and motor center
ICL_R
PLP_R
SPS_R
23
inferior clamp
PB
ATL_R
FB
ATL_L
12
ATL_R
MB_VL_R
FB
ME_L
96
ATL_R
SMP_R
137
antler
ICL_R
MB_VL_R
48
vertical lobe of adult mushroom body
EB
FB
141
ellipsoid body
AL_R
11
LAL_R
AL_R
PLP_R
MB_CA_R
17
adult antennal lobe
LO_R
PB
ME_R
116
LO_R
ME_R
MB_CA_L
124
medulla
LH_R
SLP_R
159
superior lateral protocerebrum
ATL_R
MB_VL_R
SMP_R
114
PB
SMP_R
128
MB_ML_R
SMP_R
CRE_L
131
superior medial protocerebrum
AVLP_R
32
AVLP_R
PVLP_R
PLP_R
44
anterior ventrolateral protocerebrum
AMMC_R
IVLP_R
IPS_R
22
wedge
MB_PED_R
MB_CA_R
SCL_R
GA_R
76
MB_CA_R
87
calyx of adult mushroom body
IB_R
SPS_R
7
superior posterior slope
SAD
IPS_R
GNG
3
AMMC_R
IVLP_R
SPS_R
IPS_R
4
IPS_R
GNG
62
inferior posterior slope
GNG
1
MB_VL_R
GNG
18
PB
MB_VL_R
GNG
33
adult gnathal ganglion
PRW
0
prow
LO_L
6
lobula
LH_L
MB_VL_L
SIP_L
68
lateral horn
ATL_L
37
antler
MB_PED_L
MB_VL_L
SIP_L
MB_CA_L
59
pedunculus of adult mushroom body
CAN_R
SMP_R
ATL_L
MB_ML_L
36
medial lobe of adult mushroom body
LAL_L
AL_L
10
adult antennal lobe
SLP_L
SMP_L
152
superior lateral protocerebrum
SMP_L
146
superior medial protocerebrum
AME_L
AVLP_L
PVLP_L
PLP_L
39
anterior ventrolateral protocerebrum
PLP_L
MB_CA_L
SCL_L
60
posterior lateral protocerebrum
MB_CA_L
69
AME_L
MB_CA_L
155
calyx of adult mushroom body
IPS_L
5
IPS_R
GNG
CAN_L
IPS_L
8
inferior posterior slope

In [ ]:
# from http://stackoverflow.com/questions/3579568/choosing-a-file-in-python-with-simple-dialog
from Tkinter import Tk
from tkFileDialog import askopenfilename

Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filenamet = askopenfilename() # show an "Open" dialog box and return the path to the selected file
print(filenamet)
nimt=nb.load(filenamet)
Dtemp=np.squeeze(nimt.get_data())
Dtemp.shape

Reorder by larger sub-regions (~ presumed stimulus to motor)


In [70]:
LargerRegionsDic={'':'','AME_R':'OL','LO_R':'OL','NO':'CX','BU_R':'CX','PB':'CX','LH_R':'LH','LAL_R':'LX','SAD':'PENP'
               ,'CAN_R':'PENP','AMMC_R':'PENP','ICL_R':'INP','VES_R':'VMNP','IB_R':'INP','ATL_R':'INP','CRE_R':'INP'
               ,'MB_PED_R':'MB','MB_VL_R':'MB','MB_ML_R':'MB','FLA_R':'PENP','LOP_R':'OL','EB':'CX','AL_R':'AL',
                'ME_R':'OL','FB':'CX','SLP_R':'SNP','SIP_R':'SNP','SMP_R':'SNP','AVLP_R':'VLNP','PVLP_R':'VLNP',
                'IVLP_R':'VLNP','PLP_R':'VLNP','AOTU_R':'VLNP','GOR_R':'VMNP','MB_CA_R':'MB','SPS_R':'VMNP',
                'IPS_R':'VMNP','SCL_R':'INP','EPA_R':'VMNP','GNG':'GNG','PRW':'PENP','GA_R':'LX','AME_L':'OL'
                ,'LO_L':'OL','BU_L':'CX','LH_L':'LH','LAL_L':'LX','CAN_L':'PENP','AMMC_L':'PENP','ICL_L':'INP',
                'VES_L':'VMNP','IB_L':'INP','ATL_L':'INP','CRE_L':'INP','MB_PED_L':'MB','MB_VL_L':'MB',
                'MB_ML_L':'MB','FLA_L':'PENP','LOP_L':'OL','AL_L':'AL','ME_L':'OL','SLP_L':'SNP','SIP_L':'SNP',
                'SMP_L':'SNP','AVLP_L':'VLNP','PVLP_L':'VLNP','IVLP_L':'VLNP','PLP_L':'VLNP','AOTU_L':'VLNP',
                'GOR_L':'VMNP','MB_CA_L':'MB','SPS_L':'VMNP','IPS_L':'VMNP','SCL_L':'INP','EPA_L':'VMNP','GA_L':'LX'}

In [71]:
SmallRegionsSorted=['ME_L','ME_R','LO_R','LO_L','LOP_R','LOP_L','AME_R','AME_L',
                  'PLP_R','PLP_L','PVLP_R','PVLP_L','AVLP_R','AVLP_L','AOTU_R','AOTU_L','IVLP_R','IVLP_L',
                  'AL_R','AL_L',
                  'MB_CA_R','MB_CA_L','MB_PED_R','MB_PED_L','MB_VL_R','MB_VL_L','MB_ML_R','MB_ML_L',
                  'SMP_R','SMP_L','SIP_R','SLP_L','SLP_R','SIP_L',
                  'LH_R','LH_L',                  
                  'CRE_R','CRE_L','ICL_R','ICL_L','SCL_R','SCL_L','IB_R','IB_L','ATL_R','ATL_L',
                  'EB','PB','NO','FB',
                  'BU_R','BU_L','LAL_R','LAL_L','GA_R','GA_L',
                  'GOR_R','GOR_L','EPA_R','EPA_L','VES_R','VES_L','SPS_R','SPS_L','IPS_R','IPS_L',
                  'AMMC_R','AMMC_L','SAD','FLA_R','FLA_L','PRW','CAN_R','CAN_L',
                  'GNG','']

In [72]:
Tozip=range(len(SmallRegionsSorted))
SmallRegionsDic=dict(zip(SmallRegionsSorted,Tozip))

In [73]:
LargerRegionInd={ 'OL':1,'VLNP':2,'VMNP':3,'AL':4,'MB':5,'LH':6,'SNP':7,'CX':8,'LX':9,'INP':10,'PENP':11,'GNG':12,'':13}

In [75]:
LargerRegion=[LargerRegionsDic[CompMainName[i]] for i in range(S[3])]

In [76]:
LargerRegionI=np.array([LargerRegionInd[LargerRegion[i]] for i in range(S[3])])

In [78]:
SmallRegion=np.array([SmallRegionsDic[CompMainName[i]] for i in range(S[3])])

In [79]:
NewOrder=np.argsort(SmallRegion)

Last pruning by hand


In [80]:
%%javascript
IPython.OutputArea.auto_scroll_threshold =4000;



In [81]:
if S[2]>5:
    Nstack=5
    Int100=[(i+1)*100/Nstack for i in range(Nstack)]
    Percs=np.percentile(range(S[2]),Int100)
    Indices=np.split(range(S[2]),Percs)
    D1=np.zeros([S[0],S[1],Nstack])
    Dmean=np.squeeze(data[:,:,range(Nstack),2])
    for i in range(Nstack):
        Vmean=np.mean(Dtemp[:,:,Indices[i]],2)
        Dmean[:,:,i]=Vmean
else:
    Nstack=S[2]
    D1=np.zeros([S[0],S[1],S[2]])
    Dmean=data[:,:,range(S[2])]  
    Dmean=np.squeeze(Dtemp[:,:,:])


/usr/local/lib/python2.7/dist-packages/numpy/lib/shape_base.py:422: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
  sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))

In [82]:
plt.imshow(Dmean[:,:,1],cmap=plt.cm.gray)


Out[82]:
<matplotlib.image.AxesImage at 0x7f0ba5e46d50>

In [83]:
my_cmap=plt.cm.jet
my_cmap.set_bad(alpha=0)
Good_ICs=np.zeros(S[3])
Label_ICs=[]
pylab.rcParams['figure.figsize'] = (15, 2.5)

In [84]:
algorithm = linear_model.LinearRegression()

In [85]:
Sxk=Xk.shape

In [98]:
X=Xk

In [99]:
X[0,:]=(Xk[0,:]-np.mean(Xk[0,:]))/np.std(Xk[0,:])
X[1,:]=(Xk[1,:]-np.mean(Xk[1,:]))/np.std(Xk[1,:])
X[2,:]=(Xk[2,:]-np.mean(Xk[2,:]))/np.std(Xk[2,:])
X[3,:]=(Xk[:,4]-np.mean(Xk[:,4]))/np.std(Xk[:,4])

In [101]:
plt.plot(X[0,:])
plt.plot(X[1,:])
plt.plot(X[2,:])
#plt.plot(X[:,3])


Out[101]:
[<matplotlib.lines.Line2D at 0x7f0ba6227b10>]

In [102]:
for j in range(S[3]):

    a=''
    if S[2]>5:
        for i in range(Nstack):
            V=Dmaps[:,:,Indices[i],j]
            D1[:,:,i]=np.max(V,2)
        D2[:,:,:,j]=D1
        D1[D1==0]=np.nan
           
    else:
        for i in range(S[2]):
            V=Dmaps[:,:,i,Order[j]]
            D1[:,:,i]=V 

    if (CompMainName[j] != '') and (LargerRegionI[j]!=1) and (LargerRegionI[j]==1 or LargerRegionI[j]==1
                                                             
                                                             
                                                             ):
        print(j)
        print(CompMainName[j])
        for i in range(Nstack):
            plt.subplot(1,5,i+1)
            plt.imshow(Dmean[:,:,i],cmap=plt.cm.gray)
            plt.imshow(D1[:,:,i], cmap=my_cmap,interpolation='none')
            frame1 = plt.gca()
            frame1.axes.get_xaxis().set_visible(False)
            frame1.axes.get_yaxis().set_visible(False)
        
        plt.show()
        
        model = algorithm.fit(X, DT[:,j])
        betas = model.coef_
        rsq = model.score(X,DT[:,j])
        print('left:',betas[0],'right:',betas[1],'walk:',betas[2],'groom:',betas[3])
        print(rsq)
        plt.plot(Time_fluoICA.T,2*DT[:,j]+1.5)
        plt.plot(Time_fluoICA.T,2*(Xk[:,0]-Xk[:,1])/np.max(Xk[:,0]-Xk[:,1]),color=(1,0,0))   
        plt.plot(Time_fluoICA.T,Xk[:,4]/np.max(Xk[:,4])+4,color=(1,0,0))
        plt.show()
        a=raw_input()
    
    Label_ICs.append(a)
    if Label_ICs[j]!='':
        Good_ICs[j]=1

In [103]:
Dmaps.shape


Out[103]:
(155, 88, 10, 160)

In [104]:
fn=open('/home/sophie/Desktop/773GoodICs150.txt','w')
for i in range(S[3]):
    if Good_ICs[i]:
        print>>fn, i
        print>>fn, CompMainName[i]
        print>>fn, Good_ICs[i]

In [105]:
if len(Label_ICs)<S[3]:
    for j in range(S[3]-len(Label_ICs)):
      Label_ICs.append('')

In [106]:
G=Good_ICs.tolist();

In [107]:
len(Good_ICs)


Out[107]:
160

In [108]:
G.count(1)


Out[108]:
0

Plot all components for turning left, right, walking, and grooming


In [113]:
Rsq=np.zeros((1,S[3]))
Betas=np.zeros((3,S[3]))

In [114]:
for j in range(S[3]):
    model = algorithm.fit(X.T, DT[:,j])
    Betas[:,j] = model.coef_
    Rsq[:,j] = model.score(X.T,DT[:,j])

In [115]:
plt.plot(Betas[0,:])


Out[115]:
[<matplotlib.lines.Line2D at 0x7f0ba628c710>]

In [134]:
del Final_map
del Fmaps

In [135]:
if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

In [136]:
GoodICo=Good_ICs[NewOrder]
D2o=D2[:,:,:,NewOrder]
LargerRegionIo=LargerRegionI[NewOrder]
Ind=np.array(range(S[3]))
Indexo=Ind[NewOrder]
DTo=DT[:,NewOrder]

In [137]:
C=np.zeros((S[3],3))
i=0
for j in range(S[3]):  
    if Betas[0,j]>0.14:
    #if 1>0.1:
        C[j,:]=C1[i%6][:]
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=D2[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #print(Indexo[j])
        i=i+1

In [132]:
np.max(np.max(np.max(Final_map)))


Out[132]:
1.0

In [133]:
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/16
    Df=Df/(np.max(np.max(Df)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)



In [138]:
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/16
    Df=Df/(np.max(np.max(Df)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Df[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)


Plot all components together


In [71]:
if S[2]>5:
    Final_map=np.zeros([S[0],S[1],5,3])
    Fmaps=np.zeros([S[0],S[1],5,3])
else:
    Final_map=np.zeros([S[0],S[1],3]) 
    Fmaps=np.zeros([S[0],S[1],3])    
C=np.zeros([S[3],3])

In [72]:
C1=np.zeros([6,3])
C1[0][:]=(1,0,0)
C1[1][:]=(0,1,0)
C1[2][:]=(0,0,1)
C1[3][:]=(0.8,0.8,0)
C1[4][:]=(0,1,1)
C1[5][:]=(1,0,1)
S1=DT.shape

In [73]:
GoodICo=Good_ICs[NewOrder]
D2o=D2[:,:,:,NewOrder]
LargerRegionIo=LargerRegionI[NewOrder]
Ind=np.array(range(S[3]))
Indexo=Ind[NewOrder]
DTo=DT[:,NewOrder]

In [74]:
C=np.zeros((S[3],3))
i=0
for j in range(S[3]):  
    if LargerRegionIo[j]<12 and GoodICo[j]:
        C[j,:]=C1[i%6][:]
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2o[:,:,:,j],S[0]*S[1]*5)))
            Fmaps[:,:,:,k]=0.6*D2o[:,:,:,j]*C[j,k]/M
        Final_map=Final_map+Fmaps
        #print(Indexo[j])
        i=i+1

In [75]:
pylab.rcParams['figure.figsize'] = (15, 6)
C2=np.zeros(3)

Df=np.zeros([S[0],S[1],5,3]) 
  
for i in range(3):
    Df[:,:,:,i]=Final_map[:,:,:,i]+Dmean/16
    Df=Df/(np.max(np.max(Df)))
if S[2]>5:
    N=Nstack
else:
    N=S[2]
for i in range(N):
    #if Good_ICs[j]:
        plt.subplot(1,N,i+1)
        plt.imshow(Dmean[:,:,i],cmap=plt.cm.gray)
        plt.imshow(Df[:,:,i,:],cmap=my_cmap,interpolation='none')
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
plt.tight_layout(pad=0,w_pad=0,h_pad=0)



In [123]:
pylab.rcParams['figure.figsize'] = (10, 15)
h=0.5
i=0

for j in range(S[3]):
    if GoodICo[j]:
        plt.plot(Time_fluoICA,(DTo[:,j]+h*i),color=C[j,:]) 
        i=i+1
plt.xlim([np.min(Time_fluoICA),np.max(Time_fluoICA)])
plt.ylim([-0.5,h*i])
frame1 = plt.gca()
frame1.axes.get_yaxis().set_visible(False)
plt.show()



In [124]:
k=0
J=np.zeros(len(GoodICo[GoodICo==1]))
for j in range(len(GoodICo)):
    if GoodICo[j]:
        print(k)
        print([CompMainName[Indexo[j]]])
        J[k]=j
        k=k+1


0
['ME_L']
1
['ME_L']
2
['ME_L']
3
['ME_L']
4
['ME_L']
5
['ME_L']
6
['ME_R']
7
['ME_R']
8
['LO_R']
9
['LO_R']
10
['LO_R']
11
['LO_R']
12
['LO_L']
13
['LO_L']
14
['LO_L']
15
['LOP_L']
16
['AVLP_R']
17
['AVLP_L']
18
['IVLP_R']
19
['IVLP_R']
20
['IVLP_L']
21
['AL_L']
22
['MB_VL_R']
23
['SMP_R']
24
['EB']
25
['PB']
26
['PB']
27
['PB']
28
['PB']
29
['PB']
30
['PB']
31
['SPS_R']
32
['SPS_L']
33
['IPS_R']
34
['IPS_R']
35
['IPS_R']
36
['IPS_R']
37
['IPS_R']
38
['IPS_R']
39
['IPS_R']
40
['IPS_L']
41
['IPS_L']
42
['SAD']
43
['FLA_L']
44
['PRW']
45
['PRW']
46
['PRW']
47
['GNG']
48
['']
49
['']
50
['']
51
['']
52
['']
53
['']
54
['']
55
['']
56
['']
57
['']

In [125]:
Sets=[range(10),range(10,12),range(12,17),range(17,20),20,range(21,23),range(23,25),25]

In [126]:
pylab.rcParams['figure.figsize'] = (12, 6)

for i in range(len(Sets)):
    
    Final_map2=np.zeros([S[0],S[1],3]) 
    Fmaps2=np.zeros([S[0],S[1],3]) 
    Final_map3=np.zeros([S[0],S[1],5,3]) 
    Fmaps3=np.zeros([S[0],S[1],5,3])     
     
    if type(Sets[i])==list:
        for j in np.array(Sets[i]):
            C=np.zeros((S[3],3))
            C[j,:]=C1[j%6][:]
            
            for k in range(3):           
                M=np.max(np.squeeze(np.reshape(D2o[:,:,:,J[j]],S[0]*S[1]*5)))
                Fmaps2[:,:,k]=0.9*np.mean(D2o[:,:,:,J[j]],2)*C[j,k]/M
                M=np.max(np.squeeze(np.reshape(D2o[:,:,:,J[j]],S[0]*S[1],5)))
                Fmaps3[:,:,:,k]=0.9*D2o[:,:,:,J[j]]*C[j,k]/M                
            Final_map2=Final_map2+Fmaps2
            Final_map3=Final_map3+Fmaps3            
                
    else:
        j=Sets[i]
        C[j,:]=C1[j%6][:]
        for k in range(3):           
            M=np.max(np.squeeze(np.reshape(D2o[:,:,:,J[j]],S[0]*S[1]*5)))
            Fmaps2[:,:,k]=0.8*np.mean(D2o[:,:,:,J[j]],2)*C[j,k]/M
        Final_map2=Final_map2+Fmaps2
                
    Df=np.zeros([S[0],S[1],3]) 
  
    for l in range(3):
        Df[:,:,l]=Final_map2[:,:,l]+np.mean(Dmean,2)/16
    MM=np.max(np.max(Df))

    Rotated=ndimage.rotate(Df[:,:,:]/MM,-90)
    a=plt.imshow(Rotated,cmap=my_cmap,interpolation='none')
    frame1 = plt.gca()
    frame1.axes.get_xaxis().set_visible(False)
    frame1.axes.get_yaxis().set_visible(False)

    plt.show()


/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:16: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:17: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:18: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-126-721c891f5728> in <module>()
     16                 M=np.max(np.squeeze(np.reshape(D2o[:,:,:,J[j]],S[0]*S[1]*5)))
     17                 Fmaps2[:,:,k]=0.9*np.mean(D2o[:,:,:,J[j]],2)*C[j,k]/M
---> 18                 M=np.max(np.squeeze(np.reshape(D2o[:,:,:,J[j]],S[0]*S[1],5)))
     19                 Fmaps3[:,:,:,k]=0.9*D2o[:,:,:,J[j]]*C[j,k]/M
     20             Final_map2=Final_map2+Fmaps2

/usr/local/lib/python2.7/dist-packages/numpy/core/fromnumeric.pyc in reshape(a, newshape, order)
    222     except AttributeError:
    223         return _wrapit(a, 'reshape', newshape, order=order)
--> 224     return reshape(newshape, order=order)
    225 
    226 

ValueError: total size of new array must be unchanged

In [ ]: