In [86]:
import torch
from torch import nn
import numpy as np
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
In [2]:
def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,stride=stride, padding=1, bias=False)
In [105]:
class BasicBlock(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
In [106]:
class ResNet(nn.Module):
def __init__(self, BasicBlock, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(BasicBlock, 64, layers[0])
self.layer2 = self._make_layer(BasicBlock, 128, layers[1], stride=2)
self.layer3 = self._make_layer(BasicBlock, 256, layers[2], stride=2)
self.layer4 = self._make_layer(BasicBlock, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 , num_classes)
self.fc = nn.Linear(512 , num_classes)
def _make_layer(self, BasicBlock, planes, num_blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes:
downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes,kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes))
layers = []
layers.append(BasicBlock(self.inplanes, planes, stride, downsample))
self.inplanes = planes
for i in range(1, num_blocks):
layers.append(BasicBlock(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x) # 224x224
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x) # 112x112
x = self.layer1(x) # 56x56
x = self.layer2(x) # 28x28
x = self.layer3(x) # 14x14
x = self.layer4(x) # 7x7
x = self.avgpool(x) # 1x1
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
In [107]:
def resnet34(**kwargs):
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
return model
In [108]:
resnet = resnet34()
In [109]:
dummy_image = torch.Tensor(np.zeros([2,3,224,224]))
In [110]:
resnet(dummy_image).shape
Out[110]:
In [ ]: