P6_3mc (186)
H14(A)=
[[-1.51075 -2.03645874 0. 0. ]
[ 3.73863167 7.07825 0. 0. ]
[ 0. 0. -0.85525 0. ]
[ 0. 0. 0. -0.85525 ]]
H24(M)=
[[-1.51075 -2.03645874 -0. -0. ]
[ 3.73863167 7.07825 -0. -0. ]
[-0. -0. -1.4966875 0.37033411]
[-0. -0. 0.37033411 -0.6414375 ]]
H13(M)=
[[-1.51075 -2.03645874 0. 0. ]
[ 3.73863167 7.07825 0. 0. ]
[ 0. 0. -1.4966875 0.37033411]
[ 0. 0. 0.37033411 -0.6414375 ]]
---------------------------------------
report of tight-binding model
---------------------------------------
k-space dimension = 3
r-space dimension = 3
number of spin components = 1
periodic directions = [0, 1, 2]
number of orbitals = 16
number of electronic states = 16
lattice vectors:
# 0 ===> [ 2.8406 , -1.64 , 0.0 ]
# 1 ===> [ 0.0 , 3.28 , 0.0 ]
# 2 ===> [ 0.0 , 0.0 , 5.412 ]
positions of orbitals:
# 0 ===> [ 0.0 , 0.0 , 0.0 ]
# 1 ===> [ 0.0 , 0.0 , 0.0 ]
# 2 ===> [ 0.0 , 0.0 , 0.0 ]
# 3 ===> [ 0.0 , 0.0 , 0.0 ]
# 4 ===> [ 0.6667 , 0.3333 , 0.5 ]
# 5 ===> [ 0.6667 , 0.3333 , 0.5 ]
# 6 ===> [ 0.6667 , 0.3333 , 0.5 ]
# 7 ===> [ 0.6667 , 0.3333 , 0.5 ]
# 8 ===> [ 0.6667 , 0.3333 , 0.125 ]
# 9 ===> [ 0.6667 , 0.3333 , 0.125 ]
# 10 ===> [ 0.6667 , 0.3333 , 0.125 ]
# 11 ===> [ 0.6667 , 0.3333 , 0.125 ]
# 12 ===> [ 0.0 , 0.0 , 0.625 ]
# 13 ===> [ 0.0 , 0.0 , 0.625 ]
# 14 ===> [ 0.0 , 0.0 , 0.625 ]
# 15 ===> [ 0.0 , 0.0 , 0.625 ]
site energies:
# 0 ===> -19.046
# 1 ===> 4.142
# 2 ===> 4.142
# 3 ===> 4.142
# 4 ===> -19.046
# 5 ===> 4.142
# 6 ===> 4.142
# 7 ===> 4.142
# 8 ===> 1.666
# 9 ===> 12.368
# 10 ===> 12.368
# 11 ===> 12.368
# 12 ===> 1.666
# 13 ===> 12.368
# 14 ===> 12.368
# 15 ===> 12.368
hoppings:
< 0 | H | 8 + [ 0 , 0 , 0 ] > ===> -1.5108 + 0.0 i
< 0 | H | 8 + [ -1 , 0 , 0 ] > ===> -1.5108 + 0.0 i
< 0 | H | 8 + [ -1 , -1 , 0 ] > ===> -1.5108 + 0.0 i
< 0 | H | 9 + [ 0 , 0 , 0 ] > ===> -2.0365 + 0.0 i
< 0 | H | 9 + [ -1 , 0 , 0 ] > ===> -2.0365 + 0.0 i
< 0 | H | 9 + [ -1 , -1 , 0 ] > ===> -2.0365 + 0.0 i
< 0 | H | 10 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 0 | H | 10 + [ -1 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 0 | H | 10 + [ -1 , -1 , 0 ] > ===> 0.0 + 0.0 i
< 0 | H | 11 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 0 | H | 11 + [ -1 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 0 | H | 11 + [ -1 , -1 , 0 ] > ===> 0.0 + 0.0 i
< 0 | H | 12 + [ 0 , 0 , -1 ] > ===> -1.5108 + 0.0 i
< 0 | H | 13 + [ 0 , 0 , -1 ] > ===> -2.0365 + 0.0 i
< 0 | H | 14 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 0 | H | 15 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 1 | H | 8 + [ 0 , 0 , 0 ] > ===> 3.7386 + 0.0 i
< 1 | H | 8 + [ -1 , 0 , 0 ] > ===> 3.7386 + 0.0 i
< 1 | H | 8 + [ -1 , -1 , 0 ] > ===> 3.7386 + 0.0 i
< 1 | H | 9 + [ 0 , 0 , 0 ] > ===> 7.0782 + 0.0 i
< 1 | H | 9 + [ -1 , 0 , 0 ] > ===> 7.0782 + 0.0 i
< 1 | H | 9 + [ -1 , -1 , 0 ] > ===> 7.0782 + 0.0 i
< 1 | H | 10 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 1 | H | 10 + [ -1 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 1 | H | 10 + [ -1 , -1 , 0 ] > ===> 0.0 + 0.0 i
< 1 | H | 11 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 1 | H | 11 + [ -1 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 1 | H | 11 + [ -1 , -1 , 0 ] > ===> 0.0 + 0.0 i
< 1 | H | 12 + [ 0 , 0 , -1 ] > ===> 3.7386 + 0.0 i
< 1 | H | 13 + [ 0 , 0 , -1 ] > ===> 7.0782 + 0.0 i
< 1 | H | 14 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 1 | H | 15 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 2 | H | 8 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 2 | H | 8 + [ -1 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 2 | H | 8 + [ -1 , -1 , 0 ] > ===> 0.0 + 0.0 i
< 2 | H | 9 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 2 | H | 9 + [ -1 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 2 | H | 9 + [ -1 , -1 , 0 ] > ===> 0.0 + 0.0 i
< 2 | H | 10 + [ 0 , 0 , 0 ] > ===> -1.4967 + 0.0 i
< 2 | H | 10 + [ -1 , 0 , 0 ] > ===> -1.4967 + 0.0 i
< 2 | H | 10 + [ -1 , -1 , 0 ] > ===> -1.4967 + 0.0 i
< 2 | H | 11 + [ 0 , 0 , 0 ] > ===> 0.3703 + 0.0 i
< 2 | H | 11 + [ -1 , 0 , 0 ] > ===> 0.3703 + 0.0 i
< 2 | H | 11 + [ -1 , -1 , 0 ] > ===> 0.3703 + 0.0 i
< 2 | H | 12 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 2 | H | 13 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 2 | H | 14 + [ 0 , 0 , -1 ] > ===> -0.8552 + 0.0 i
< 2 | H | 15 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 3 | H | 8 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 3 | H | 8 + [ -1 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 3 | H | 8 + [ -1 , -1 , 0 ] > ===> 0.0 + 0.0 i
< 3 | H | 9 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 3 | H | 9 + [ -1 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 3 | H | 9 + [ -1 , -1 , 0 ] > ===> 0.0 + 0.0 i
< 3 | H | 10 + [ 0 , 0 , 0 ] > ===> 0.3703 + 0.0 i
< 3 | H | 10 + [ -1 , 0 , 0 ] > ===> 0.3703 + 0.0 i
< 3 | H | 10 + [ -1 , -1 , 0 ] > ===> 0.3703 + 0.0 i
< 3 | H | 11 + [ 0 , 0 , 0 ] > ===> -0.6414 + 0.0 i
< 3 | H | 11 + [ -1 , 0 , 0 ] > ===> -0.6414 + 0.0 i
< 3 | H | 11 + [ -1 , -1 , 0 ] > ===> -0.6414 + 0.0 i
< 3 | H | 12 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 3 | H | 13 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 3 | H | 14 + [ 0 , 0 , -1 ] > ===> 0.0 + 0.0 i
< 3 | H | 15 + [ 0 , 0 , -1 ] > ===> -0.8552 + 0.0 i
< 4 | H | 8 + [ 0 , 0 , 0 ] > ===> -1.5108 + 0.0 i
< 4 | H | 9 + [ 0 , 0 , 0 ] > ===> -2.0365 + 0.0 i
< 4 | H | 10 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 4 | H | 11 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 4 | H | 12 + [ 0 , 0 , 0 ] > ===> -1.5108 + 0.0 i
< 4 | H | 12 + [ 1 , 1 , 0 ] > ===> -1.5108 + 0.0 i
< 4 | H | 12 + [ 1 , -1 , 0 ] > ===> -1.5108 + 0.0 i
< 4 | H | 13 + [ 0 , 0 , 0 ] > ===> -2.0365 + 0.0 i
< 4 | H | 13 + [ 1 , 1 , 0 ] > ===> -2.0365 + 0.0 i
< 4 | H | 13 + [ 1 , -1 , 0 ] > ===> -2.0365 + 0.0 i
< 4 | H | 14 + [ 0 , 0 , 0 ] > ===> -0.0 + 0.0 i
< 4 | H | 14 + [ 1 , 1 , 0 ] > ===> -0.0 + 0.0 i
< 4 | H | 14 + [ 1 , -1 , 0 ] > ===> -0.0 + 0.0 i
< 4 | H | 15 + [ 0 , 0 , 0 ] > ===> -0.0 + 0.0 i
< 4 | H | 15 + [ 1 , 1 , 0 ] > ===> -0.0 + 0.0 i
< 4 | H | 15 + [ 1 , -1 , 0 ] > ===> -0.0 + 0.0 i
< 5 | H | 8 + [ 0 , 0 , 0 ] > ===> 3.7386 + 0.0 i
< 5 | H | 9 + [ 0 , 0 , 0 ] > ===> 7.0782 + 0.0 i
< 5 | H | 10 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 5 | H | 11 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 5 | H | 12 + [ 0 , 0 , 0 ] > ===> 3.7386 + 0.0 i
< 5 | H | 12 + [ 1 , 1 , 0 ] > ===> 3.7386 + 0.0 i
< 5 | H | 12 + [ 1 , -1 , 0 ] > ===> 3.7386 + 0.0 i
< 5 | H | 13 + [ 0 , 0 , 0 ] > ===> 7.0782 + 0.0 i
< 5 | H | 13 + [ 1 , 1 , 0 ] > ===> 7.0782 + 0.0 i
< 5 | H | 13 + [ 1 , -1 , 0 ] > ===> 7.0782 + 0.0 i
< 5 | H | 14 + [ 0 , 0 , 0 ] > ===> -0.0 + 0.0 i
< 5 | H | 14 + [ 1 , 1 , 0 ] > ===> -0.0 + 0.0 i
< 5 | H | 14 + [ 1 , -1 , 0 ] > ===> -0.0 + 0.0 i
< 5 | H | 15 + [ 0 , 0 , 0 ] > ===> -0.0 + 0.0 i
< 5 | H | 15 + [ 1 , 1 , 0 ] > ===> -0.0 + 0.0 i
< 5 | H | 15 + [ 1 , -1 , 0 ] > ===> -0.0 + 0.0 i
< 6 | H | 8 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 6 | H | 9 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 6 | H | 10 + [ 0 , 0 , 0 ] > ===> -0.8552 + 0.0 i
< 6 | H | 11 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 6 | H | 12 + [ 0 , 0 , 0 ] > ===> -0.0 + 0.0 i
< 6 | H | 12 + [ 1 , 1 , 0 ] > ===> -0.0 + 0.0 i
< 6 | H | 12 + [ 1 , -1 , 0 ] > ===> -0.0 + 0.0 i
< 6 | H | 13 + [ 0 , 0 , 0 ] > ===> -0.0 + 0.0 i
< 6 | H | 13 + [ 1 , 1 , 0 ] > ===> -0.0 + 0.0 i
< 6 | H | 13 + [ 1 , -1 , 0 ] > ===> -0.0 + 0.0 i
< 6 | H | 14 + [ 0 , 0 , 0 ] > ===> -1.4967 + 0.0 i
< 6 | H | 14 + [ 1 , 1 , 0 ] > ===> -1.4967 + 0.0 i
< 6 | H | 14 + [ 1 , -1 , 0 ] > ===> -1.4967 + 0.0 i
< 6 | H | 15 + [ 0 , 0 , 0 ] > ===> 0.3703 + 0.0 i
< 6 | H | 15 + [ 1 , 1 , 0 ] > ===> 0.3703 + 0.0 i
< 6 | H | 15 + [ 1 , -1 , 0 ] > ===> 0.3703 + 0.0 i
< 7 | H | 8 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 7 | H | 9 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 7 | H | 10 + [ 0 , 0 , 0 ] > ===> 0.0 + 0.0 i
< 7 | H | 11 + [ 0 , 0 , 0 ] > ===> -0.8552 + 0.0 i
< 7 | H | 12 + [ 0 , 0 , 0 ] > ===> -0.0 + 0.0 i
< 7 | H | 12 + [ 1 , 1 , 0 ] > ===> -0.0 + 0.0 i
< 7 | H | 12 + [ 1 , -1 , 0 ] > ===> -0.0 + 0.0 i
< 7 | H | 13 + [ 0 , 0 , 0 ] > ===> -0.0 + 0.0 i
< 7 | H | 13 + [ 1 , 1 , 0 ] > ===> -0.0 + 0.0 i
< 7 | H | 13 + [ 1 , -1 , 0 ] > ===> -0.0 + 0.0 i
< 7 | H | 14 + [ 0 , 0 , 0 ] > ===> 0.3703 + 0.0 i
< 7 | H | 14 + [ 1 , 1 , 0 ] > ===> 0.3703 + 0.0 i
< 7 | H | 14 + [ 1 , -1 , 0 ] > ===> 0.3703 + 0.0 i
< 7 | H | 15 + [ 0 , 0 , 0 ] > ===> -0.6414 + 0.0 i
< 7 | H | 15 + [ 1 , 1 , 0 ] > ===> -0.6414 + 0.0 i
< 7 | H | 15 + [ 1 , -1 , 0 ] > ===> -0.6414 + 0.0 i
hopping distances:
| pos( 0 ) - pos( 8 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 8 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 8 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 9 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 9 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 9 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 10 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 10 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 10 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 11 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 11 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 11 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 0 ) - pos( 12 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 0 ) - pos( 13 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 0 ) - pos( 14 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 0 ) - pos( 15 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 1 ) - pos( 8 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 8 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 8 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 9 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 9 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 9 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 10 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 10 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 10 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 11 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 11 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 11 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 1 ) - pos( 12 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 1 ) - pos( 13 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 1 ) - pos( 14 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 1 ) - pos( 15 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 2 ) - pos( 8 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 8 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 8 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 9 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 9 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 9 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 10 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 10 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 10 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 11 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 11 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 11 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 2 ) - pos( 12 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 2 ) - pos( 13 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 2 ) - pos( 14 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 2 ) - pos( 15 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 3 ) - pos( 8 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 8 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 8 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 9 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 9 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 9 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 10 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 10 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 10 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 11 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 11 + [ -1 , 0 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 11 + [ -1 , -1 , 0 ] ) | = 2.0109
| pos( 3 ) - pos( 12 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 3 ) - pos( 13 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 3 ) - pos( 14 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 3 ) - pos( 15 + [ 0 , 0 , -1 ] ) | = 2.0295
| pos( 4 ) - pos( 8 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 4 ) - pos( 9 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 4 ) - pos( 10 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 4 ) - pos( 11 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 4 ) - pos( 12 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 4 ) - pos( 12 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 4 ) - pos( 12 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 4 ) - pos( 13 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 4 ) - pos( 13 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 4 ) - pos( 13 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 4 ) - pos( 14 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 4 ) - pos( 14 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 4 ) - pos( 14 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 4 ) - pos( 15 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 4 ) - pos( 15 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 4 ) - pos( 15 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 5 ) - pos( 8 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 5 ) - pos( 9 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 5 ) - pos( 10 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 5 ) - pos( 11 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 5 ) - pos( 12 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 5 ) - pos( 12 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 5 ) - pos( 12 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 5 ) - pos( 13 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 5 ) - pos( 13 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 5 ) - pos( 13 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 5 ) - pos( 14 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 5 ) - pos( 14 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 5 ) - pos( 14 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 5 ) - pos( 15 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 5 ) - pos( 15 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 5 ) - pos( 15 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 6 ) - pos( 8 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 6 ) - pos( 9 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 6 ) - pos( 10 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 6 ) - pos( 11 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 6 ) - pos( 12 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 6 ) - pos( 12 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 6 ) - pos( 12 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 6 ) - pos( 13 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 6 ) - pos( 13 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 6 ) - pos( 13 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 6 ) - pos( 14 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 6 ) - pos( 14 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 6 ) - pos( 14 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 6 ) - pos( 15 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 6 ) - pos( 15 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 6 ) - pos( 15 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 7 ) - pos( 8 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 7 ) - pos( 9 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 7 ) - pos( 10 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 7 ) - pos( 11 + [ 0 , 0 , 0 ] ) | = 2.0295
| pos( 7 ) - pos( 12 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 7 ) - pos( 12 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 7 ) - pos( 12 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 7 ) - pos( 13 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 7 ) - pos( 13 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 7 ) - pos( 13 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 7 ) - pos( 14 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 7 ) - pos( 14 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 7 ) - pos( 14 + [ 1 , -1 , 0 ] ) | = 5.0557
| pos( 7 ) - pos( 15 + [ 0 , 0 , 0 ] ) | = 2.0109
| pos( 7 ) - pos( 15 + [ 1 , 1 , 0 ] ) | = 2.0109
| pos( 7 ) - pos( 15 + [ 1 , -1 , 0 ] ) | = 5.0557
----- k_path report begin ----------
real-space lattice vectors
[[ 2.84056 -1.64 0. ]
[ 0. 3.28 0. ]
[ 0. 0. 5.412 ]]
k-space metric tensor
[[ 0.12393 0.06197 0. ]
[ 0.06197 0.12393 0. ]
[ 0. 0. 0.03414]]
internal coordinates of nodes
[[ 0. 0. 0.5 ]
[ 0.5 0. 0.5 ]
[ 0.5 0. 0. ]
[ 0. 0. 0. ]
[ 0. 0. 0.5 ]
[ 0.66667 0.33333 0.5 ]
[ 0.66667 0.33333 0. ]
[ 0. 0. 0. ]]
reciprocal-space lattice vectors
[[ 0.35204 0. 0. ]
[ 0.17602 0.30488 0. ]
[ 0. 0. 0.18477]]
cartesian coordinates of nodes
[[ 0. 0. 0.09239]
[ 0.17602 0. 0.09239]
[ 0.17602 0. 0. ]
[ 0. 0. 0. ]
[ 0. 0. 0.09239]
[ 0.29337 0.10163 0.09239]
[ 0.29337 0.10163 0. ]
[ 0. 0. 0. ]]
list of segments:
length = 0.17602 from [ 0. 0. 0.5] to [ 0.5 0. 0.5]
length = 0.09239 from [ 0.5 0. 0.5] to [ 0.5 0. 0. ]
length = 0.17602 from [ 0.5 0. 0. ] to [ 0. 0. 0.]
length = 0.09239 from [ 0. 0. 0.] to [ 0. 0. 0.5]
length = 0.31047 from [ 0. 0. 0.5] to [ 0.66667 0.33333 0.5 ]
length = 0.09239 from [ 0.66667 0.33333 0.5 ] to [ 0.66667 0.33333 0. ]
length = 0.31047 from [ 0.66667 0.33333 0. ] to [ 0. 0. 0.]
node distance list: [ 0. 0.17602 0.26841 0.44443 0.53682 0.84729 0.93968 1.25015]
node index list: [ 0 42 64 107 129 203 225 300]
----- k_path report end ------------
Calculating bandstructure...
Plotting bandstructure...