In [1]:
from SimPEG import *
import simpegDCIP as DC
%pylab inline
In [2]:
cs = 25.
hx = [(cs,7, -1.3),(cs,21),(cs,7, 1.3)]
hy = [(cs,7, -1.3),(cs,21),(cs,7, 1.3)]
hz = [(cs,7, -1.3),(cs,20)]
In [3]:
mesh = Mesh.TensorMesh([hx, hy, hz], 'CCN')
In [4]:
blk1 = Utils.ModelBuilder.getIndicesBlock(np.r_[-50, 75, -50], np.r_[75, -50, -150], mesh.gridCC)
sighalf = 1e-3
sigma = np.ones(mesh.nC)*sighalf
sigma[blk1] = 1e-1
sigmahomo = np.ones(mesh.nC)*sighalf
In [5]:
mesh.plotSlice(sigma, normal='X', grid=True)
mesh.plotSlice(sigma, ind=22, normal='Z', grid=True)
Out[5]:
In [6]:
xtemp = np.linspace(-150, 150, 21)
ytemp = np.linspace(-150, 150, 21)
xyz_rxP = Utils.ndgrid(xtemp-10., ytemp, np.r_[0.])
xyz_rxN = Utils.ndgrid(xtemp+10., ytemp, np.r_[0.])
xyz_rxM = Utils.ndgrid(xtemp, ytemp, np.r_[0.])
In [7]:
fig, ax = plt.subplots(1,1, figsize = (5,5))
mesh.plotSlice(sigma, grid=True, ax = ax)
ax.plot(xyz_rxP[:,0],xyz_rxP[:,1], 'w.')
ax.plot(xyz_rxN[:,0],xyz_rxN[:,1], 'r.', ms = 3)
Out[7]:
In [8]:
rx = DC.RxDipole(xyz_rxP, xyz_rxN)
tx = DC.SrcDipole([rx], [-200, 0, -12.5],[+200, 0, -12.5])
print xyz_rxP.size
In [9]:
survey = DC.SurveyDC([tx])
problem = DC.ProblemDC_CC(mesh)
problem.pair(survey)
In [10]:
try:
from pymatsolver import MumpsSolver
problem.Solver = MumpsSolver
except Exception, e:
problem.Solver = SolverLU
In [11]:
from pymatsolver import MumpsSolver
In [12]:
problem.Solver = SolverLU
data = survey.dpred(sigmahomo)
In [13]:
# Plot pseudo section
for ii in range(data):
In [ ]:
u1 = problem.fields(sigma)
u2 = problem.fields(sigmahomo)
In [15]:
Msig1 = Utils.sdiag(1./(mesh.aveF2CC.T*(1./sigma)))
Msig2 = Utils.sdiag(1./(mesh.aveF2CC.T*(1./sigmahomo)))
In [16]:
j1 = Msig1*mesh.cellGrad*u1[tx, 'phi_sol']
j2 = Msig2*mesh.cellGrad*u2[tx, 'phi_sol']
In [17]:
# us = u1-u2
# js = j1-j2
In [2]:
mesh.plotSlice(mesh.aveF2CCV*j1, vType='CCv', normal='Y', view='vec', streamOpts={"density":3, "color":'w'})
#xlim(-300, 300)
#ylim(-300, 0)
In [23]:
mesh.plotSlice(mesh.aveF2CCV*js, vType='CCv', normal='Y', view='vec', streamOpts={"density":3, "color":'w'})
xlim(-300, 300)
ylim(-300, 0)
In [ ]:
a = np.random.randn(3)
In [ ]:
print (a.reshape([1,-1])).repeat(3, axis = 0)
print (a.reshape([1,-1])).repeat(3, axis = 0).sum(axis=1)
In [ ]:
def DChalf(txlocP, txlocN, rxloc, sigma, I=1.):
rp = (txlocP.reshape([1,-1])).repeat(rxloc.shape[0], axis = 0)
rn = (txlocN.reshape([1,-1])).repeat(rxloc.shape[0], axis = 0)
rP = np.sqrt(((rxloc-rp)**2).sum(axis=1))
rN = np.sqrt(((rxloc-rn)**2).sum(axis=1))
return I/(sigma*2.*np.pi)*(1/rP-1/rN)
In [ ]:
data_analP = DChalf(np.r_[-200, 0, 0.],np.r_[+200, 0, 0.], xyz_rxP, sighalf)
data_analN = DChalf(np.r_[-200, 0, 0.],np.r_[+200, 0, 0.], xyz_rxN, sighalf)
data_anal = data_analP-data_analN
In [ ]:
Data_anal = data_anal.reshape((21, 21), order = 'F')
Data = data.reshape((21, 21), order = 'F')
X = xyz_rxM[:,0].reshape((21, 21), order = 'F')
Y = xyz_rxM[:,1].reshape((21, 21), order = 'F')
In [ ]:
fig, ax = plt.subplots(1,2, figsize = (12, 5))
vmin = np.r_[data, data_anal].min()
vmax = np.r_[data, data_anal].max()
dat0 = ax[0].contourf(X, Y, Data, 60, vmin = vmin, vmax = vmax)
dat1 = ax[1].contourf(X, Y, Data_anal, 60, vmin = vmin, vmax = vmax)
cb0 = plt.colorbar(dat1, orientation = 'horizontal', ax = ax[0])
cb1 = plt.colorbar(dat1, orientation = 'horizontal', ax = ax[1])
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: