In [1]:
import tensorflow as tf
print tf.__version__
from selectors.deepfashion import get_image_with_bbox
from matplotlib import pyplot as plt
from PIL import Image
import PIL.ImageDraw as ImageDraw
import numpy as np
import PIL.ImageFont as ImageFont
from __future__ import division
%matplotlib inline
In [2]:
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def draw_bounding_box_on_image(image,
ymin,
xmin,
ymax,
xmax,
color='red',
thickness=4,
display_str_list=(),
use_normalized_coordinates=True):
"""Adds a bounding box to an image.
Each string in display_str_list is displayed on a separate line above the
bounding box in black text on a rectangle filled with the input 'color'.
Args:
image: a PIL.Image object.
ymin: ymin of bounding box.
xmin: xmin of bounding box.
ymax: ymax of bounding box.
xmax: xmax of bounding box.
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list: list of strings to display in box
(each to be shown on its own line).
use_normalized_coordinates: If True (default), treat coordinates
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
coordinates as absolute.
"""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
if use_normalized_coordinates:
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
else:
(left, right, top, bottom) = (xmin, xmax, ymin, ymax)
draw.line([(left, top), (left, bottom), (right, bottom),
(right, top), (left, top)], width=thickness, fill=color)
try:
font = ImageFont.truetype('arial.ttf', 24)
except IOError:
font = ImageFont.load_default()
text_bottom = top
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
text_width, text_height = font.getsize(display_str)
margin = np.ceil(0.05 * text_height)
draw.rectangle(
[(left, text_bottom - text_height - 2 * margin), (left + text_width,
text_bottom)],
fill=color)
draw.text(
(left + margin, text_bottom - text_height - margin),
display_str,
fill='black',
font=font)
text_bottom -= text_height - 2 * margin
def draw_bounding_box_on_image_array(image,
ymin,
xmin,
ymax,
xmax,
color='red',
thickness=4,
display_str_list=(),
use_normalized_coordinates=True):
"""Adds a bounding box to an image (numpy array).
Args:
image: a numpy array with shape [height, width, 3].
ymin: ymin of bounding box in normalized coordinates (same below).
xmin: xmin of bounding box.
ymax: ymax of bounding box.
xmax: xmax of bounding box.
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list: list of strings to display in box
(each to be shown on its own line).
use_normalized_coordinates: If True (default), treat coordinates
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
coordinates as absolute.
"""
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
thickness, display_str_list,
use_normalized_coordinates)
np.copyto(image, np.array(image_pil))
In [3]:
images, bboxes = get_image_with_bbox('top,front')
print images[0]
print bboxes[0]
start = 5000
num_images = 3
images = images[start:start+num_images]
bboxes = bboxes[start:start+num_images]
for image, bbox in zip(images, bboxes):
image = Image.open(image)
width, height = image.size
image = load_image_into_numpy_array(image)
ymin, xmin, ymax, xmax = bbox
ymin = ymin/height
ymax = ymax/height
xmin = xmin/width
xmax = xmax/width
print ymin
draw_bounding_box_on_image_array(image, ymin, xmin, ymax, xmax)
plt.figure(figsize=(12, 8))
plt.imshow(image)
In [ ]: