In [10]:
# Math libraries
import numpy as np
from math import sqrt
# Matplotlib plotting libraries
import matplotlib.pyplot as plt
%matplotlib inline
# Bokeh plotting libraries
import bokeh.plotting as blt
blt.output_notebook()
In [17]:
class JuliaSet(object):
def __init__(self,c,n=100):
self.c = c
self.n = n
self._d = 0.001
self._complexplane = np.array([])
self.set = np.array([])
def juliamap(self,z):
return z**2 + self.c
def iterate(self,z):
m=0
while True:
z=self.juliamap(z)
m+=1
if abs(z)>2:
return m
if m>=self.n:
return 0
def makeplane(self):
r=np.arange(-2,2,self._d)
self._complexplane=[complex(p,q) for p in r for q in r]
def set_spacing(self,d):
self._d=d
self.makeplane()
def generate(self):
self.set=[self.iterate(a) for a in self._complexplane]
return self.set
In [18]:
class JuliaSetPlot(JuliaSet):
"""Extend JuliaSet to add plotting functionality"""
def __init__(self, *args, **kwargs):
# Invoke constructor for JuliaSet first, unaltered
JuliaSet.__init__(self, *args, **kwargs)
# Add another attribute: a rendered image array
self.img = np.array([])
def get_dim(self):
"""Return linear number of points in axis"""
return int(sqrt(self.img.size))
def render(self):
"""Render image as square array of ints"""
if not self.set: self.generate()
# Convert inefficient list to efficient numpy array
self.img = np.array(self.set)
# Reshape array into a 2d complex plane
dim = int(sqrt(len(self.img)))
self.img = np.reshape(self.img, (dim,dim)).T
def show(self):
"""Use matplotlib to plot image as an efficient mesh"""
if not self.img.size: self.render()
plt.figure(1, figsize=(12,9))
xy = np.linspace(-2,2,self.get_dim())
plt.pcolormesh(xy, xy, self.img, cmap=plt.cm.hot)
plt.colorbar()
plt.show()
def interact(self):
"""Use bokeh to plot an interactive image"""
from matplotlib.colors import rgb2hex
if not self.img.size: self.render()
# Mimic matplotlib "hot" color palette
colormap = plt.cm.get_cmap("hot")
bokehpalette = [rgb2hex(m) for m in colormap(np.arange(colormap.N))]
# Create bokeh figure
f = blt.figure(x_range=(-2,2), y_range=(-2,2), plot_width=600, plot_height=600)
f.image(image=[self.img], x=[-2], y=[-2], dw=[4], dh=[4], palette=bokehpalette, dilate=True)
blt.show(f)
In [19]:
j = JuliaSetPlot(-1.037 + 0.17j)
%time j.set_spacing(0.006)
%time j.generate()
%time j.show()