In [9]:
import labwork
from labwork import *
import numpy as np
import matplotlib.pyplot as plt
In [5]:
help(labwork)
In [7]:
L = np.array([273, 259.6, 229.6, 169.6])
x1_x2 = np.array([0.95, 0.9, 0.8, 0.6])
In [26]:
alpha_i = x1_x2 / L
In [72]:
errs = [prodErrorR([(0.1 / L)[i], (0.1 / x1_x2)[i]]) for i in range(len(L))]
for i in range(4):
sciPrintR(alpha_i[i], errs[i], "alpha_%d =" % (i))
In [73]:
(x1_x2 / L).std(ddof=1) / (x1_x2 / L)
Out[73]:
In [74]:
alpha = (x1_x2 / L).mean()
In [75]:
sciPrintR(alpha, np.array(errs).max() / (4) ** 0.5, "alpha = ") # разные способы оценить погрешность
sciPrintR(alpha, (x1_x2 / L).std(ddof=1) / alpha, "alpha = ")
In [54]:
f = np.array([241.6, 203.5, 163.5])
F = 3.6
d = 1. / (1. / F - 1. / f)
d
Out[54]:
In [117]:
k = np.array([5, 6, 6])
w = np.array([5, 4.8, 4]) # ширина полосы на экран, см
Л2 = w / k
Л2_err = 0.1 / 5 / ((5) ** 0.5)
Л2
Out[117]:
In [118]:
Г = (f) / d
Г_err = prodErrorR([1 / f.min(), 0.1 / F])
Г
Out[118]:
In [119]:
Л1 = Л2 / Г
Л1_err = prodErrorR([Г_err, Л2_err])
Л1
Out[119]:
In [120]:
lambd = 660 * 1e-9 * 100
In [121]:
alpha_second = lambd / Л1
for i in range(3):
sciPrintR(alpha_second[i], Л1_err)
In [128]:
sciPrintR(alpha_second.mean(), Л1_err)
In [125]:
Г_вода = 208 / (1. / (1./F - 1./208))
Л2_вода = 8.3 / 4
Л1_вода = Л2_вода / Г_вода
Л1_вода
Out[125]:
In [144]:
alpha_aqua = lambd / Л1_вода
sciPrintR(alpha_aqua, Л1_err)
In [133]:
alpha / alpha_aqua
Out[133]:
In [141]:
c = alpha_aqua /alpha_second.mean()
x = (c - 1.3333) / (c - 1)
x
Out[141]:
In [143]:
Л1_err,
Out[143]:
In [138]:
(1.33 - 1) * (1.44 - 1)
Out[138]:
In [145]:
1.81 / (1.56 - 1.333333)
Out[145]:
In [ ]: