In [ ]:
%matplotlib inline
In [ ]:
import numpy as np
from scipy.optimize import leastsq
import pylab as pl
def func(x, p):
"""
数据拟合所用的函数: A*sin(2*pi*k*x + theta)
"""
A, k, theta = p
return A*np.sin(2*np.pi*k*x+theta)
def residuals(p, y, x):
"""
实验数据x, y和拟合函数之间的差,p为拟合需要找到的系数
"""
return y - func(x, p)
x = np.linspace(0, -2*np.pi, 100)
A, k, theta = 10, 0.34, np.pi/6
y0 = func(x, [A, k, theta])
y1 = y0 + 2 * np.random.randn(len(x))
p0 = [7, 0.2, 0]
plsq = leastsq(residuals, p0, args=(y1, x))
print u"真实参数:", [A, k, theta]
print u"拟合参数", plsq[0]
pl.plot(x, y0, label=u"真实数据")
pl.plot(x, y1, label=u"带噪声的实验数据")
pl.plot(x, func(x, plsq[0]), label=u"拟合数据")
pl.legend()
pl.show()
In [ ]: