In [ ]:
import tensorflow as tf
import matplotlib.pyplot as plt
a=tf.constant([1.0,2.0,3.0,4.0,5.0],name='f')
b=tf.constant([1.0,2.0,3.0,4.0,5.0],name='s')
epoch=tf.constant(500)
lr=0.005
for i in range(2):
    p=tf.multiply(epoch,(i+1))
    t1=0.0
    t0=0.0
    s1=tf.reduce_sum(tf.multiply(tf.subtract(tf.add(tf.multiply(a,t1),t0),b),a))
    s0=tf.reduce_sum(tf.subtract(tf.add(tf.multiply(a,t1),t0),b))
    teta1=tf.subtract(t1,tf.multiply(lr,tf.divide(s1,tf.cast(tf.size(a),tf.float32))))
    teta0=tf.subtract(t0,tf.multiply(lr,tf.divide(s0,tf.cast(tf.size(a),tf.float32))))
    threshold=0.001
    model=tf.global_variables_initializer()
   
    with tf.Session() as sess:
       sess.run(model)
       for j in range(sess.run(p)):
           t1=teta1
           t0=teta0
           s1=tf.reduce_sum(tf.multiply(tf.subtract(tf.add(tf.multiply(a,t1),t0),b),a))
           s0=tf.reduce_sum(tf.subtract(tf.add(tf.multiply(a,t1),t0),b))
           teta1=tf.subtract(t1,tf.multiply(lr,tf.divide(s1,tf.cast(tf.size(a),tf.float32))))
           teta0=tf.subtract(t0,tf.multiply(lr,tf.divide(s0,tf.cast(tf.size(a),tf.float32))))
       print("epoch value : ",sess.run(p))
       print("theta1 :",sess.run(teta1))
       print("theta0 :",sess.run(teta0))

In [ ]: