In [ ]:
import tensorflow as tf
import matplotlib.pyplot as plt
a=tf.constant([1.0,2.0,3.0,4.0,5.0],name='f')
b=tf.constant([1.0,2.0,3.0,4.0,5.0],name='s')
epoch=tf.constant(500)
lr=0.005
for i in range(2):
p=tf.multiply(epoch,(i+1))
t1=0.0
t0=0.0
s1=tf.reduce_sum(tf.multiply(tf.subtract(tf.add(tf.multiply(a,t1),t0),b),a))
s0=tf.reduce_sum(tf.subtract(tf.add(tf.multiply(a,t1),t0),b))
teta1=tf.subtract(t1,tf.multiply(lr,tf.divide(s1,tf.cast(tf.size(a),tf.float32))))
teta0=tf.subtract(t0,tf.multiply(lr,tf.divide(s0,tf.cast(tf.size(a),tf.float32))))
threshold=0.001
model=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(model)
for j in range(sess.run(p)):
t1=teta1
t0=teta0
s1=tf.reduce_sum(tf.multiply(tf.subtract(tf.add(tf.multiply(a,t1),t0),b),a))
s0=tf.reduce_sum(tf.subtract(tf.add(tf.multiply(a,t1),t0),b))
teta1=tf.subtract(t1,tf.multiply(lr,tf.divide(s1,tf.cast(tf.size(a),tf.float32))))
teta0=tf.subtract(t0,tf.multiply(lr,tf.divide(s0,tf.cast(tf.size(a),tf.float32))))
print("epoch value : ",sess.run(p))
print("theta1 :",sess.run(teta1))
print("theta0 :",sess.run(teta0))
In [ ]: