In [3]:
import numpy as np
In [4]:
import pandas as pd
In [5]:
labels = ["A","B","C"]
In [6]:
my_data = [10,20,30]
In [7]:
arr = np.array(my_data)
d = {"A":10,"B":20,"C":30}
In [8]:
d
Out[8]:
In [9]:
pd.Series(my_data,labels)
Out[9]:
In [11]:
pd.Series(arr,labels)
Out[11]:
In [12]:
pd.Series(d)
Out[12]:
In [13]:
pd.Series(labels,labels)
Out[13]:
In [16]:
pd.Series([1,2,4],["USA","INDIA","USSR"])
Out[16]:
In [18]:
x = pd.Series([6,7,"India Is ..."],["India","USA","USSR"])
In [19]:
x["India"]
Out[19]:
In [20]:
x["USSR"] = "India is an ally"
In [21]:
x
Out[21]:
In [24]:
np.randn(5,5)
In [25]:
from numpy.random import randn
In [27]:
np.random.seed(101)
In [38]:
df = pd.DataFrame(randn(5,4),index='A B C D E'.split(),columns='W X Y Z'.split())
In [44]:
randn(5,4)
df
Out[44]:
In [40]:
df["new-co"] = df["X"]
In [43]:
df.drop("new-co",axis=1)
Out[43]:
In [45]:
df.drop("new-co",axis=1,inplace=True)
In [46]:
df
Out[46]:
In [55]:
df[["W","Y","Z"]]
Out[55]:
In [58]:
df["NEW"] = df["W"]
In [66]:
df.drop("NEW",axis=1,inplace=True)
df
Out[66]:
In [63]:
df
Out[63]:
In [68]:
df.loc["A"]
Out[68]:
In [70]:
df.loc["E"]
Out[70]:
In [71]:
df.loc["D","Y"]
Out[71]:
In [74]:
df.loc[["A","E"],["X","Y"]]
Out[74]:
In [75]:
df
Out[75]:
In [76]:
df["Y"]
Out[76]:
In [77]:
df[df>0]
Out[77]:
In [78]:
df["W"]
Out[78]:
In [79]:
df[["W","Y","Z"]]
Out[79]:
In [80]:
my_list = ["X","Y","Z"]
In [81]:
df[my_list]
Out[81]:
In [82]:
df["New-Col"] = df["X"] + df["Y"]
In [83]:
df
Out[83]:
In [84]:
df.drop("New-Col",axis=1,inplace=True)
In [85]:
df
Out[85]:
In [86]:
df.loc["A"]
Out[86]:
In [87]:
my_idf = ["A","B","C"]
In [88]:
df.loc[my_idf]
Out[88]:
In [91]:
df.loc[my_idf,my_list]
Out[91]:
In [94]:
x = df.index
In [95]:
x
Out[95]:
In [96]:
df.loc[x]
Out[96]:
In [97]:
df.columns
Out[97]:
In [98]:
cols = df.columns
In [99]:
df.loc[x,cols]
Out[99]:
In [101]:
df["W"]>.5
Out[101]:
In [106]:
df[["X","Y"]]
Out[106]:
In [119]:
df[df["W"]>0][["W","X"]]
Out[119]:
In [118]:
df[df['W']>0][['W','X']]
Out[118]:
In [121]:
df[df["Y"]>0][["X","Y"]]
Out[121]:
In [123]:
boolx = df["W"]>0
In [124]:
boolx
Out[124]:
df[boolx]
In [126]:
my_cols = ["X","Y"]
In [127]:
my_cols
Out[127]:
In [129]:
res = df[boolx]
In [130]:
res[my_cols]
Out[130]:
In [141]:
df[(df["W"]>0) & (df["X"]>1)][["W","X","Y"]]
Out[141]:
In [138]:
df
Out[138]:
In [142]:
time.clock()
In [143]:
import time
In [145]:
x = time.time()
In [146]:
type(x)
Out[146]:
In [147]:
x
Out[147]:
In [153]:
x = pd.date_range('07:00:00', periods=10, freq='30min')
In [168]:
x
type(x)
Out[168]:
In [162]:
pd.date_range('07:00:00', periods=10, freq='15min')
Out[162]:
In [165]:
datetime = 6
In [166]:
datetime
Out[166]:
In [167]:
type(datetime)
Out[167]:
In [171]:
In [170]:
from datetime import timedelta
In [172]:
def add_nums(x,y):
return x+y
add_nums(2,2)
Out[172]:
In [174]:
def add_numbers(x,y,z):
return x+y+z
add_numbers(1,2,3)
Out[174]:
In [179]:
def do_math(a,b,kind)
if (kind == 'add'):
return a+b
else:
return a-b
In [180]:
datetime.datetime.strptime('03:55', '%H:%M').time()
In [181]:
datetime.time(*map(int, '03:55'.split(':')))
datetime.time(3, 55)
In [183]:
lst = [1,2]
In [182]:
lst2 = [3,4]
In [184]:
z = lst + lst2
In [185]:
z
Out[185]:
In [186]:
lst*3
Out[186]:
In [189]:
lst[0]*3
Out[189]:
In [188]:
lst[1]*3
Out[188]:
In [190]:
1 in lst
Out[190]:
In [191]:
6 in lst
Out[191]:
In [ ]: