In [50]:
import pandas as pd

In [51]:
raw_data = pd.ExcelFile('london.xlsx')
data = raw_data.parse('Sheet1')

print data.head()


               Date   Time  Number_of_Casualties
2770115  23/11/1990  00:01                     2
4661940  07/12/1998  00:01                     1
2264722  11/09/1988  00:01                     1
2268405  06/08/1988  00:01                     2
5583244  13/07/2002  00:01                     1

In [52]:
data['Date'] = pd.to_datetime(data['Date'])

In [53]:
data['Date'][:5]


Out[53]:
2770115   1990-11-23
4661940   1998-07-12
2264722   1988-11-09
2268405   1988-06-08
5583244   2002-07-13
Name: Date, dtype: datetime64[ns]

In [54]:
data.sort(['Date'], inplace=True)
data.head()


Out[54]:
Date Time Number_of_Casualties
21 1979-01-01 13:10 2
6 1979-01-01 03:00 2
7 1979-01-01 03:00 1
15 1979-01-01 10:00 1
2 1979-01-01 01:25 3

In [55]:
data2 = data[(data['Date'] > pd.to_datetime('2000-08-01')) & (data['Date'] < pd.to_datetime('2000-08-30'))]

In [56]:
data2.set_index('Date', inplace=True)
data2.head()

data2 = data2[['Number_of_Casualties']]
data2.head()


Out[56]:
Number_of_Casualties
Date
2000-08-02 1
2000-08-02 1
2000-08-02 1
2000-08-02 2
2000-08-02 1

In [57]:
%pylab inline
import matplotlib.pylab as plt
data2.plot()
plt.show()


Populating the interactive namespace from numpy and matplotlib

In [ ]: