In [3]:
%pylab inline

from scipy import stats
def measure(n):
    "Measurement model, return two coupled measurements."
    m1 = np.random.normal(size=n)
    m2 = np.random.normal(scale=0.5, size=n)
    return m1+m2, m1-m2

m1, m2 = measure(2000)
xmin = m1.min()
xmax = m1.max()
ymin = m2.min()
ymax = m2.max()

X, Y = np.mgrid[xmin:xmax, ymin:ymax]
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
          extent=[xmin, xmax, ymin, ymax])
ax.plot(m1, m2, 'k.', markersize=2)
ax.set_xlim([xmin, xmax])
ax.set_ylim([ymin, ymax])
plt.show()


print(values)


Populating the interactive namespace from numpy and matplotlib
[[ 1.30406678 -0.025848    0.49650381 ..., -1.78539297 -0.38853416
  -0.44378473]
 [ 0.2859947  -0.5211723  -0.1465387  ...,  0.91759967 -0.36091535
   0.29439465]]