In [1]:
%pylab inline
from astropy.convolution import Tophat2DKernel,Gaussian2DKernel
#Notebook outputs normalized filter files for SExtractor
In [9]:
pix_rad = 10
tophat_2D_kernel = Tophat2DKernel(pix_rad)
int_array = np.array(tophat_2D_kernel)
print(int_array.shape)
full_array = np.zeros((len(int_array[0,:]),len(int_array[:,0])))
i = 0
while i < len(int_array):
full_array[i,:] = int_array[i][:]
i = i+1
normalization = 1./np.amax(int_array)
plt.imshow(tophat_2D_kernel, interpolation='none', origin='lower')
plt.xlabel('x [pixels]')
plt.ylabel('y [pixels]')
plt.colorbar()
plt.show()
print(full_array[1,1])
th = open("top_hat_"+str(pix_rad)+"pix"+".conv","w")
th.write("CONV NORM"+"\n")
for i in full_array:
for j in i:
th.write(str("{0:.8}".format(str(j*normalization))).ljust(8,"0") + " ")
th.write("\n")
th.close()
In [8]:
filter_size = 11
FWHM = 2
gauss_2D_kernel = Gaussian2DKernel(FWHM,x_size = filter_size,y_size=filter_size)
int_array = np.array(gauss_2D_kernel)
full_array = np.zeros((len(int_array[0,:]),len(int_array[:,0])))
i = 0
while i < len(int_array):
full_array[i,:] = int_array[i][:]
i = i+1
normalization = 1./np.amax(int_array)
plt.imshow(gauss_2D_kernel, interpolation='none', origin='lower')
plt.xlabel('x [pixels]')
plt.ylabel('y [pixels]')
plt.colorbar()
plt.show()
print(full_array[1,1])
gs = open("gauss_"+"FWHM"+str(FWHM)+"_dim"+str(filter_size)+".conv","w")
gs.write("CONV NORM"+"\n")
for i in full_array:
for j in i:
gs.write(str("{0:.8}".format(str(j*normalization))).ljust(8,"0") + " ")
gs.write("\n")
gs.close()
print(np.amax(int_array))