$\frac{z(t)}{Z_0} = \sum_{i=0}^{N} a_i exp(\frac{t}{\tau_i})$


In [84]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt

In [85]:
import astropy

In [86]:
import scipy

In [87]:
taumin, taumax = 0.01, 1
x = np.linspace(taumin, taumax, 100)
time = x.copy()

In [88]:
def gaussian(med, std, tau):
    x = np.log(tau/med)
    return 1./(std*np.sqrt(2*np.pi)) * np.exp(-x**2/(2*std**2))

In [89]:
tau = 0.5
std = 0.1
out = gaussian(tau, std, x)

In [90]:
plt.plot(x, out)


Out[90]:
[<matplotlib.lines.Line2D at 0x108406890>]

In [81]:
A = np.zeros((x.size, x.size))

In [82]:
for i in range(x.size):
    A[i,:] = gaussian(x[i], std, x)

In [83]:
data = np.dot(A, np.ones(x.size))

In [76]:
plt.plot(data)


Out[76]:
[<matplotlib.lines.Line2D at 0x10818d8d0>]

In [ ]: