In [1]:
import simpegDarcy as Darcy
import simpegSP as SP
from SimPEG import Mesh, Maps, Utils
from pymatsolver import PardisoSolver
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [2]:
# Generate 3D mesh
csx, csy, csz = 5., 5., 2.5
ncx, ncy, ncz = 30, 30, 20
npad = 8
hx = [(csx, npad, -1.3), (csx, ncx), (csx, npad, 1.3)]
hy = [(csy, npad, -1.3), (csy, ncy), (csy, npad, 1.3),]
hz = [(csz, npad, -1.3), (csz, ncz-4), (csz/2., 4)]
mesh = Mesh.TensorMesh([hx, hy, hz], "CC0")
mesh._x0 = np.r_[mesh.x0[0], mesh.x0[1], -mesh.hz[:5].sum()]
# Generate Darcy problem
Darcyprb = Darcy.Problem_CC(mesh, KMap=Maps.IdentityMap(mesh))
# Set boundary condition
bc = [["dirichlet", "dirichlet"], ["neumann", "neumann"], ["neumann", "neumann"]]
hbc = [[50., 30.] ,[0., 0.], [0., 0.]]
Darcyprb.setBC(bc, hbc)
# Set Darcy survey
locs = Utils.ndgrid(mesh.vectorCCx, mesh.vectorCCy, np.r_[mesh.vectorCCz[-1]])
rx = Darcy.DarcyRx(locs)
Darcysurvey = Darcy.DarcySurvey([rx])
# Make hydraulic conductivity model (m/s)
K = np.ones(mesh.nC)*1e-7
layerind1 = np.logical_and(mesh.gridCC[:,2]>=20., mesh.gridCC[:,2]<30.)
blkind1 = np.logical_and(mesh.gridCC[:,0]>-30., mesh.gridCC[:,0]<30.) & np.logical_or(mesh.gridCC[:,1]<-30., mesh.gridCC[:,1]>30.)
K[layerind1] = 1e-5
K[blkind1 & layerind1] = 1e-9
# Pair the survey to the problem
Darcysurvey.pair(Darcyprb)
Darcyprb.Solver = PardisoSolver

In [3]:
h = Darcyprb.fields(K)

In [4]:
gradh = Darcyprb.gradh(h)
vel = Darcyprb.vel(h)

In [5]:
from SimPEG import Survey

In [6]:
out = mesh.plotSlice(np.log10(K), grid=True, ind= 15, normal="Z", clim=(-9, -5))
plt.colorbar(out[0])


Out[6]:
<matplotlib.colorbar.Colorbar at 0x1180d2890>

In [7]:
out = mesh.plotSlice(np.log10(K), grid=True, normal="Y", clim=(-9, -5))
plt.colorbar(out[0])


Out[7]:
<matplotlib.colorbar.Colorbar at 0x117e63f90>

In [8]:
p = Darcyprb.p(h)
p[p<0.] = np.nan
out = mesh.plotSlice(p, grid=True, normal="Y", clim=(0, 50))
plt.colorbar(out[0])


Out[8]:
<matplotlib.colorbar.Colorbar at 0x13279edd0>

In [9]:
out = mesh.plotSlice(gradh, grid=False, normal="Z", view="vec", vType="F", ind=15)
plt.colorbar(out[0])
out = mesh.plotSlice(gradh, grid=False, normal="Y", view="vec", vType="F", clim=out[0].get_clim(), ind =8)
plt.colorbar(out[0])


Out[9]:
<matplotlib.colorbar.Colorbar at 0x133c06cd0>

In [10]:
fxm, fxp, fym, fyp, fzm, fzp = mesh.faceBoundaryInd
find = np.r_[fxm+fxp, fym+fyp, fzm+fzp]
vel[find] = 0.

In [11]:
out = mesh.plotSlice(vel, normal="Z", view="vec", vType="F", streamOpts={"color":"w"}, ind=15)
plt.colorbar(out[0])
mesh.plotSlice(vel, normal="Y", view="vec", vType="F", clim=out[0].get_clim(), streamOpts={"color":"w"})
plt.colorbar(out[0])


Out[11]:
<matplotlib.colorbar.Colorbar at 0x133fcf850>

In [12]:
out = mesh.plotSlice(Darcyprb.divgradh(h), grid=True, normal="Z", ind=15)
plt.colorbar(out[0])
mesh.plotSlice(Darcyprb.divgradh(h), grid=True, normal="Y", clim=out[0].get_clim())
plt.colorbar(out[0])


Out[12]:
<matplotlib.colorbar.Colorbar at 0x135b3ad90>

In [13]:
L0 = 1e-5
# jsCC = np.r_[Qv, Qv, Qv]*(mesh.aveF2CCV*vel)

In [14]:
dx = 5.
x = mesh.vectorCCx[np.logical_and(mesh.vectorCCx<150., mesh.vectorCCx>-150.)]
y = mesh.vectorCCy[np.logical_and(mesh.vectorCCy<150., mesh.vectorCCy>-150.)]
xyzM = Utils.ndgrid(x*0., y*0., np.r_[mesh.vectorCCz[-1]])
xyzN = Utils.ndgrid(x, y, np.r_[mesh.vectorCCz[-1]])

In [15]:
sigma = np.ones(mesh.nC)*1e-3
sigma[layerind1] = 1e-3
sigma[blkind1 & layerind1] = 1e-1

prb = SP.Problem_CC(mesh, sigma=sigma, hMap=Maps.IdentityMap(mesh), Solver=PardisoSolver)
rx = SP.Rx.Dipole(xyzN, xyzM)
src = SP.Src.StreamingCurrents([rx], L=np.ones(mesh.nC)*L0, mesh=mesh, modelType="Head")
survey = SP.Survey([src])
survey.pair(prb)
dobs = survey.dpred(h)
q = src.eval(prb)

In [16]:
prb = SP.Problem_CC(mesh, sigma=sigma, qMap=Maps.IdentityMap(mesh), Solver=PardisoSolver)
rx = SP.Rx.Dipole(xyzN, xyzM)
src = SP.Src.StreamingCurrents([rx], L=np.ones(mesh.nC)*L0, mesh=mesh, modelType="CurrentSource")
survey = SP.Survey([src])
survey.pair(prb)

In [17]:
out = mesh.plotSlice(q, grid=True, normal="Z", ind=15)
plt.colorbar(out[0])
mesh.plotSlice(q, grid=True, normal="Y", clim=out[0].get_clim(), ind=5)
plt.colorbar(out[0])


Out[17]:
<matplotlib.colorbar.Colorbar at 0x14e401e50>

In [18]:
# # Generate Full sensitivity
# I = np.diag(np.ones_like(dobs))
# J = np.zeros((dobs.size, mesh.nC))
# for i in range(dobs.size):
#     J[i,:] = prb.Jtvec(sigma, I[:,i])
#     JtJ = (J**2).sum(axis=0)
# JtJ /= JtJ.max()
# prb.G = J

In [ ]:


In [19]:
out = Utils.plot2Ddata(xyzN, dobs*1e3)
plt.colorbar(out[0])


Out[19]:
<matplotlib.colorbar.Colorbar at 0x14e719910>

In [20]:
mesh.vectorCCz[-1]


Out[20]:
57.342499999999987

In [21]:
mesh.vectorCCz[-1]


Out[21]:
57.342499999999987

In [22]:
depthweight = 1./ ((abs(mesh.gridCC[:,2]-mesh.vectorCCz[-1])+0.5)**1.)
depthweight /= depthweight.max()

In [23]:
out = mesh.plotSlice(np.log10(depthweight), grid=True, normal="Y", ind=8)
plt.colorbar(out[0])


Out[23]:
<matplotlib.colorbar.Colorbar at 0x14f1a47d0>

In [24]:
out = hist(np.log10(abs(dobs)), bins=100)



In [25]:
from SimPEG import (Mesh, Maps, Utils, DataMisfit, Regularization,
                    Optimization, Inversion, InvProblem, Directives)
survey.std = 0.02
# survey.eps = abs(dobs).max()*0.05
survey.eps = 1e-6
survey.dobs = dobs
 
dmisfit = DataMisfit.l2_DataMisfit(survey)
regmap = Maps.IdentityMap(nP = mesh.nC)
reg = Regularization.Sparse(mesh, mapping=regmap, cell_weights = depthweight)
# reg = Regularization.Simple(mesh, mapping=regmap)
reg.alpha_s = 1.
reg.alpha_x = 0.1
reg.alpha_y = 1.
reg.alpha_z = 0.1
opt = Optimization.ProjectedGNCG(maxIter=50, tolX=1e-20, tolF=1e-20)
opt.maxIterLS = 20
IRLS = Directives.Update_IRLS(norms=([0.,1.,1.,1.]),
                                     eps=(0.0001, 0.0001), f_min_change=1e-3,
                                     minGNiter=3)
IRLS.maxIRLSiter = 10
# senseweight = Directives.Update_Wj()
invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
target = Directives.TargetMisfit()
# Create an inversion object
beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
betaest = Directives.BetaEstimate_ByEig()
betaest.beta0_ratio = 1.
updateprecond = Directives.Update_lin_PreCond()
invProb.beta = 1e8
inv = Inversion.BaseInversion(invProb, directiveList=[beta, target])
# inv = Inversion.BaseInversion(invProb, directiveList=[IRLS])
prb.counter = opt.counter = Utils.Counter()
opt.LSshorten = 0.5
opt.remember('xc')
m0 = np.ones(mesh.nC)*0.
reg.mref = m0*0.
mopt = inv.run(m0)


SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv.
                    ***Done using same Solver and solverOpts as the problem***
model has any nan: 0
=============================== Projected GNCG ===============================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS    Comment   
-----------------------------------------------------------------------------
x0 has any nan: 0
   0  1.00e+08  4.86e+05  0.00e+00  4.86e+05    3.78e+13      0              
   1  1.00e+08  4.86e+05  7.44e-27  4.86e+05    1.25e+13      0              
   2  2.00e+07  4.86e+05  1.50e-26  4.86e+05    6.09e+12      0   Skip BFGS  
   3  2.00e+07  4.86e+05  1.16e-26  4.86e+05    6.20e+12      0              
   4  4.00e+06  3.02e+03  2.94e-10  3.02e+03    3.82e+12      0              
------------------------- STOP! -------------------------
1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 4.8561e-15
0 : |xc-x_last| = 2.2318e-04 <= tolX*(1+|x0|) = 1.0000e-20
0 : |proj(x-g)-x|    = 3.8233e+12 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 3.8233e+12 <= 1e3*eps       = 1.0000e-02
0 : maxIter   =      50    <= iter          =      5
------------------------- DONE! -------------------------

In [26]:
xc = opt.recall("xc")

In [27]:
plt.plot(dobs)
plt.plot(invProb.dpred)


Out[27]:
[<matplotlib.lines.Line2D at 0x136322e90>]

In [28]:
# fig = plt.figure(figsize = (12, 4))
# ax = plt.subplot(111)
# ax_1 = ax.twinx()
# out = ax.hist(abs(reg.l2model), bins=100)
# ax.set_xscale("linear")
# ax.set_yscale("log")
# temp = np.sort(abs(reg.l2model))
# ax_1.plot(temp, temp / (temp**2 + (reg.eps_p)**2))
# plt.xlim(0, 0.0006)

In [29]:
fig = plt.figure(figsize = (12, 4))
ax = plt.subplot(111)
ax_1 = ax.twinx()
out = ax.hist(abs(mopt), bins=100)
ax.set_xscale("linear")
ax.set_yscale("log")
temp = np.sort(abs(mopt))
# ax_1.plot(temp, temp / (temp**2 + (reg.eps_p)**2))
# plt.xlim(0, 0.0006)



In [30]:
0.00001


Out[30]:
1e-05

In [31]:
# out = mesh.plotSlice(reg.l2model, grid=True, normal="Z", ind=15, clim=(-0.0001, 0.0001))
# plt.colorbar(out[0])
# mesh.plotSlice(reg.l2model, grid=True, normal="Y", clim=out[0].get_clim(), ind=5)
# plt.colorbar(out[0])

In [32]:
print mopt.min()
print mopt.max()


-1.28913201022e-05
1.28937604031e-05

In [33]:
out = mesh.plotSlice(mopt, grid=True, normal="Y", ind=5)
plt.colorbar(out[0])
out = mesh.plotSlice(mopt, grid=True, normal="Z", ind=18, clim=out[0].get_clim())
plt.colorbar(out[0])


Out[33]:
<matplotlib.colorbar.Colorbar at 0x16023add0>

In [34]:
# plt.plot(survey.dobs)
# plt.plot(invProb.dpred)

In [35]:
out = Utils.plot2Ddata(xyzN, invProb.dpred*1e3)
plt.colorbar(out[0])


Out[35]:
<matplotlib.colorbar.Colorbar at 0x1606a7650>

In [ ]:


In [ ]: