In [1]:
import pandas as pd
import sys
import matplotlib

In [2]:
water23 = pd.read_csv("../data/waterlevel/Water23.csv", index_col='date')

In [3]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [4]:
climate = pd.read_csv("../data/waterlevel/ClimateWater.csv", index_col='date')

In [5]:
climate


Out[5]:
Temp(C) Rainfall(mm) Moisture(%) SurfaceTemp(surC) WaterH1
date
2015-01-01 -3.9 0.2 62.9 -1.8 39.30
2015-01-02 -4.3 2.4 74.8 -0.8 39.34
2015-01-03 -1.1 NaN 69.4 0.3 39.34
2015-01-04 3.1 NaN 87.6 2.6 39.34
2015-01-05 5.5 13.5 77.4 3.1 39.42
2015-01-06 0.0 2.5 66.3 1.9 39.47
2015-01-07 -3.0 NaN 53.9 -3.0 39.53
2015-01-08 -2.3 NaN 73.0 -1.9 39.56
2015-01-09 0.4 0.0 80.9 0.1 39.59
2015-01-10 0.9 NaN 71.4 0.1 39.59
2015-01-11 2.5 0.0 61.0 1.5 39.59
2015-01-12 -1.8 NaN 52.8 -1.1 39.68
2015-01-13 0.8 NaN 57.4 -0.3 39.70
2015-01-14 3.3 NaN 61.3 1.7 39.72
2015-01-15 3.1 NaN 62.3 2.8 39.74
2015-01-16 3.3 0.0 74.0 2.3 39.76
2015-01-17 -1.3 NaN 60.5 1.0 39.76
2015-01-18 0.6 2.0 77.3 -0.2 39.76
2015-01-19 2.7 0.3 68.0 2.4 39.82
2015-01-20 0.4 NaN 71.3 1.8 39.84
2015-01-21 3.5 5.0 77.6 2.3 39.86
2015-01-22 2.5 1.0 89.1 4.2 39.89
2015-01-23 1.7 NaN 81.3 2.2 39.92
2015-01-24 3.5 NaN 78.6 3.8 39.92
2015-01-25 7.1 2.5 73.5 4.1 39.92
2015-01-26 5.6 0.5 94.5 5.9 39.97
2015-01-27 -1.0 NaN 65.4 1.5 40.00
2015-01-28 -2.8 NaN 58.9 -1.6 40.02
2015-01-29 0.5 NaN 65.4 0.7 40.04
2015-01-30 -0.8 NaN 63.9 1.6 40.06
... ... ... ... ... ...
2015-12-02 9.5 11.6 77.0 7.5 33.88
2015-12-03 4.0 4.1 66.0 3.8 33.99
2015-12-04 3.6 5.5 85.1 3.4 34.09
2015-12-05 6.6 NaN 67.9 4.9 34.18
2015-12-06 2.1 NaN 65.0 3.7 34.24
2015-12-07 2.5 NaN 65.5 3.2 34.29
2015-12-08 3.8 NaN 70.8 3.7 34.30
2015-12-09 7.6 NaN 71.8 5.8 34.40
2015-12-10 9.6 9.7 90.0 8.1 34.43
2015-12-11 7.7 NaN 79.0 6.9 34.50
2015-12-12 7.0 NaN 70.5 5.5 34.50
2015-12-13 8.6 NaN 64.9 8.4 34.57
2015-12-14 6.9 6.9 88.9 6.8 34.60
2015-12-15 7.0 0.0 78.4 7.0 34.60
2015-12-16 0.6 19.5 90.0 1.7 34.68
2015-12-17 -1.5 0.0 69.5 2.3 34.80
2015-12-18 0.1 NaN 86.8 2.3 34.80
2015-12-19 2.9 NaN 86.0 3.6 34.86
2015-12-20 3.0 0.0 80.5 2.7 34.90
2015-12-21 5.5 0.5 84.4 6.4 35.00
2015-12-22 3.6 0.0 86.3 3.3 35.00
2015-12-23 6.0 0.0 89.1 6.9 35.00
2015-12-24 3.8 NaN 76.3 4.0 35.10
2015-12-25 1.9 0.0 54.8 2.5 35.10
2015-12-26 6.4 0.2 68.9 4.6 35.10
2015-12-27 -2.1 NaN 62.9 0.9 35.20
2015-12-28 -1.4 NaN 67.1 0.9 35.20
2015-12-29 0.0 NaN 73.5 0.4 35.20
2015-12-30 3.0 7.0 78.3 3.1 35.30
2015-12-31 2.6 NaN 83.1 2.9 35.28

365 rows × 5 columns


In [6]:
newindex = []
for ind in water23.index:
    newindex.append(ind.split()[0])

In [7]:
vals, inds = np.unique(newindex, return_inverse=True)

In [8]:
upperh_med = np.ones(vals.size)*np.nan
downh_med = np.ones(vals.size)*np.nan
upperh_std = np.ones(vals.size)*np.nan
downh_std = np.ones(vals.size)*np.nan

for i in range (vals.size):
    active = inds==i
    upperh_med[i] = np.median(water23["upperlevel"].values[active])
    downh_med[i] = np.median(water23["downlevel"].values[active])
    upperh_std[i] = np.std(water23["upperlevel"].values[active])
    downh_std[i] = np.std(water23["downlevel"].values[active])

In [9]:
date = climate.index.values

In [10]:
climate.keys()


Out[10]:
Index([u'Temp(C)', u'Rainfall(mm)', u'Moisture(%)', u'SurfaceTemp(surC)',
       u'WaterH1'],
      dtype='object')

In [11]:
actind = np.in1d(date, vals)

In [12]:
upperh = np.ones(date.size)*np.nan
downh = np.ones(date.size)*np.nan
upperh[actind] = upperh_med
downh[actind] = downh_med

In [15]:
waterdataset = list (zip(date, climate['WaterH1'].values, upperh, downh,\
                         climate['Rainfall(mm)'].values, climate['SurfaceTemp(surC)'].values, climate['Moisture(%)'].values))
df = pd.DataFrame(data = waterdataset, columns=['date', 'reservoirH', 'upperH_med', 'downH_med',\
                                                'Rainfall (mm)', 'Temp (degree)', 'Moisture (percent)'])
df.set_index('date')


Out[15]:
reservoirH upperH_med downH_med Rainfall (mm) Temp (degree) Moisture (percent)
date
2015-01-01 39.30 NaN NaN 0.2 -1.8 62.9
2015-01-02 39.34 NaN NaN 2.4 -0.8 74.8
2015-01-03 39.34 NaN NaN NaN 0.3 69.4
2015-01-04 39.34 NaN NaN NaN 2.6 87.6
2015-01-05 39.42 NaN NaN 13.5 3.1 77.4
2015-01-06 39.47 NaN NaN 2.5 1.9 66.3
2015-01-07 39.53 NaN NaN NaN -3.0 53.9
2015-01-08 39.56 NaN NaN NaN -1.9 73.0
2015-01-09 39.59 NaN NaN 0.0 0.1 80.9
2015-01-10 39.59 NaN NaN NaN 0.1 71.4
2015-01-11 39.59 NaN NaN 0.0 1.5 61.0
2015-01-12 39.68 NaN NaN NaN -1.1 52.8
2015-01-13 39.70 NaN NaN NaN -0.3 57.4
2015-01-14 39.72 NaN NaN NaN 1.7 61.3
2015-01-15 39.74 NaN NaN NaN 2.8 62.3
2015-01-16 39.76 35.515 19.750 0.0 2.3 74.0
2015-01-17 39.76 35.460 20.345 NaN 1.0 60.5
2015-01-18 39.76 35.500 20.480 2.0 -0.2 77.3
2015-01-19 39.82 35.550 20.580 0.3 2.4 68.0
2015-01-20 39.84 35.525 20.610 NaN 1.8 71.3
2015-01-21 39.86 35.585 20.570 5.0 2.3 77.6
2015-01-22 39.89 35.640 20.580 1.0 4.2 89.1
2015-01-23 39.92 35.630 20.610 NaN 2.2 81.3
2015-01-24 39.92 35.640 20.620 NaN 3.8 78.6
2015-01-25 39.92 35.660 20.595 2.5 4.1 73.5
2015-01-26 39.97 35.720 20.600 0.5 5.9 94.5
2015-01-27 40.00 35.700 20.630 NaN 1.5 65.4
2015-01-28 40.02 35.685 20.630 NaN -1.6 58.9
2015-01-29 40.04 35.710 20.600 NaN 0.7 65.4
2015-01-30 40.06 35.740 20.610 NaN 1.6 63.9
... ... ... ... ... ... ...
2015-12-02 33.88 NaN NaN 11.6 7.5 77.0
2015-12-03 33.99 NaN NaN 4.1 3.8 66.0
2015-12-04 34.09 NaN NaN 5.5 3.4 85.1
2015-12-05 34.18 NaN NaN NaN 4.9 67.9
2015-12-06 34.24 NaN NaN NaN 3.7 65.0
2015-12-07 34.29 NaN NaN NaN 3.2 65.5
2015-12-08 34.30 NaN NaN NaN 3.7 70.8
2015-12-09 34.40 NaN NaN NaN 5.8 71.8
2015-12-10 34.43 NaN NaN 9.7 8.1 90.0
2015-12-11 34.50 NaN NaN NaN 6.9 79.0
2015-12-12 34.50 NaN NaN NaN 5.5 70.5
2015-12-13 34.57 NaN NaN NaN 8.4 64.9
2015-12-14 34.60 NaN NaN 6.9 6.8 88.9
2015-12-15 34.60 NaN NaN 0.0 7.0 78.4
2015-12-16 34.68 NaN NaN 19.5 1.7 90.0
2015-12-17 34.80 NaN NaN 0.0 2.3 69.5
2015-12-18 34.80 NaN NaN NaN 2.3 86.8
2015-12-19 34.86 NaN NaN NaN 3.6 86.0
2015-12-20 34.90 NaN NaN 0.0 2.7 80.5
2015-12-21 35.00 NaN NaN 0.5 6.4 84.4
2015-12-22 35.00 NaN NaN 0.0 3.3 86.3
2015-12-23 35.00 NaN NaN 0.0 6.9 89.1
2015-12-24 35.10 NaN NaN NaN 4.0 76.3
2015-12-25 35.10 NaN NaN 0.0 2.5 54.8
2015-12-26 35.10 NaN NaN 0.2 4.6 68.9
2015-12-27 35.20 NaN NaN NaN 0.9 62.9
2015-12-28 35.20 NaN NaN NaN 0.9 67.1
2015-12-29 35.20 NaN NaN NaN 0.4 73.5
2015-12-30 35.30 NaN NaN 7.0 3.1 78.3
2015-12-31 35.28 NaN NaN NaN 2.9 83.1

365 rows × 6 columns


In [16]:
df['upperH_med'].plot(figsize=(20,3),color='k')


Out[16]:
<matplotlib.axes._subplots.AxesSubplot at 0x115774150>

In [17]:
fig = plt.figure(figsize=(12,4))
ax1 = plt.subplot(111)
ax1_1 = ax1.twinx()
df['upperH_med'].plot(figsize=(20,3), ax=ax1, color='k')
df['reservoirH'].plot(figsize=(20,3), ax=ax1, color='b')
df['downH_med'].plot(figsize=(20,3), ax=ax1_1, color='r')
grid(True)



In [18]:
df.keys()


Out[18]:
Index([u'date', u'reservoirH', u'upperH_med', u'downH_med', u'Rainfall (mm)',
       u'Temp (degree)', u'Moisture (percent)'],
      dtype='object')

In [19]:
ax1 = plt.subplot(111)
ax1_1 = ax1.twinx()
df.plot(figsize=(12,3), x='date', y='reservoirH', ax=ax1, color='k', linestyle='-', lw=2, marker='.', ms=2)
df.plot(figsize=(12,3), x='date', y='upperH_med', ax=ax1, color='k', linestyle='--', lw=2)
df.plot(figsize=(12,3), x='date', y='downH_med', ax=ax1_1, color='r', linestyle='-')
ax1_1.legend(loc=4)
ax1.grid(True)
indst, indend = 80, 100
ax1.plot(np.r_[indst, indst], np.r_[28, 42], 'k-')
ax1.plot(np.r_[indend, indend], np.r_[28, 42], 'k--')
print df['date'].values[indst], df['date'].values[indst]
# ax1.set_ylim(39.5, 40.5)
# ax1.set_xlim(indst, indend)


2015-03-22 2015-03-22

In [20]:
ax1 = plt.subplot(111)
ax1_1 = ax1.twinx()
df.plot(figsize=(12,3), x='date', y='reservoirH', ax=ax1, color='k', linestyle='-', lw=2, marker='.', ms=2)
df.plot(figsize=(12,3), x='date', y='upperH_med', ax=ax1, color='k', linestyle='--', lw=2)
df.plot(figsize=(12,3), x='date', y='downH_med', ax=ax1_1, color='r', linestyle='-')
ax1_1.legend(loc=4)
ax1.grid(True)
indst, indend = 80, 100
ax1.plot(np.r_[indst, indst], np.r_[28, 42], 'k-')
ax1.plot(np.r_[indend, indend], np.r_[28, 42], 'k--')
print df['date'].values[indst], df['date'].values[indst]
ax1.set_ylim(39.5, 40.5)
ax1.set_xlim(indst, indend)


2015-03-22 2015-03-22
Out[20]:
(80, 100)

In [21]:
ax1 = plt.subplot(111)
df.plot(figsize=(12,3), x='date', y='Rainfall (mm)', ax=ax1, color='b', marker='o', linestyle="-", ms=3)
df.plot(figsize=(12,3), x='date', y='Temp (degree)', ax=ax1, color='k', marker='None', linestyle="-", ms=3)
plt.tight_layout()



In [22]:
import sys
sys.path.append("../codes/")

from Readfiles import getFnames
from DCdata import readReservoirDC_data, readReservoirDC_all

directory = "../data/ChungCheonDC/"
fnames = getFnames(directory, dtype="apr", minimumsize=7000.)

In [23]:
import datetime
import numpy as np

In [24]:
def getdate(fstring):
    temp = fstring.split('.')[0]
    return datetime.date(int(temp[:4]), int(temp[4:6]), int(temp[6:8]))

In [25]:
date_temp = getdate(fnames[20])

In [26]:
date_temp.strftime("%Y-%m-%d")


Out[26]:
'2015-01-06'

In [37]:
# for i in range (vals.size):
#     active = inds==i
#     upperh_med[i] = np.median(water23["upperlevel"].values[active])
#     downh_med[i] = np.median(water23["downlevel"].values[active])
#     upperh_std[i] = np.std(water23["upperlevel"].values[active])
#     downh_std[i] = np.std(water23["downlevel"].values[active])

In [45]:
dat_temp, htemp, ID = readReservoirDC_all(directory+fnames[0])
ID.append('date')
ID.append('fnames')
ntimes = len(fnames)
DATA = np.zeros((dat_temp.shape[0], ntimes))*np.nan
index = np.ones(ntimes, dtype='bool')
for i, fname in enumerate(fnames):
    dat_temp = readReservoirDC_data(directory+fname)
    if dat_temp.shape[0] == 380:        
        DATA[:,i] = dat_temp[:,-1]
    else:
        print fname,dat_temp.shape[0]
        index[i] = False


20150103180000.apr 379
20150106180000.apr 379
20150109120000.apr 379
20150112120000.apr 379
20150117120000.apr 379
20150120120000.apr 379
20150123120000.apr 379
20150126120000.apr 379
20150127000000.apr 379
20150129060000.apr 379
20150201000000.apr 379
20150204000000.apr 379
20150207000000.apr 379
20150209180000.apr 379
20150212180000.apr 379
20150215180000.apr 379
20150218120000.apr 379
20150221060000.apr 379
20150224120000.apr 379
20150227060000.apr 379
20150228000000.apr 379
20150302000000.apr 379
20150305000000.apr 379
20150308000000.apr 379
20150329000000.apr 379
20150401000000.apr 379
20150403180000.apr 379
20150404120000.apr 379
20150406180000.apr 379
20150409000000.apr 379
20150412120000.apr 379
20150415060000.apr 379
20150418000000.apr 379
20150421000000.apr 379
20150424000000.apr 379

In [70]:



Out[70]:
382

In [48]:
fnameDC = np.array(fnames)[index]
datesDC = []
for i in range(fnameDC.size):
    tempdate = getdate(fnameDC[i])
    datesDC.append(tempdate.strftime("%Y-%m-%d"))
datesDC = np.array(datesDC)

In [49]:
datesDC.size


Out[49]:
1235

In [51]:
vals, inds = np.unique(datesDC, return_inverse=True)

In [52]:
DATA_active = DATA[:,index]
DATA_DC = np.zeros((vals.size,DATA.shape[0]))*np.nan
DATA_DC_std = np.zeros((vals.size,DATA.shape[0]))*np.nan
for i in range (vals.size):
    active = inds==i
    DATA_DC[i,:] = np.median(DATA_active[:,active], axis=1)
    DATA_DC_std[i,:] = np.std(DATA_active[:,active], axis=1)

In [53]:
actind = np.in1d(date, vals)
DATA_DC_final = np.zeros((365,DATA.shape[0]))*np.nan
DATA_DC_std_final = np.zeros((365,DATA.shape[0]))*np.nan
DATA_DC_final[actind,:] = DATA_DC
DATA_DC_std_final[actind,:] = DATA_DC_std

In [54]:
DATA_DC_final.shape


Out[54]:
(365, 380)

In [56]:
date.shape


Out[56]:
(365,)

In [57]:
DATA_DC_std_final.shape


Out[57]:
(365, 380)

In [58]:
date.reshape([-1,1]).shape


Out[58]:
(365, 1)

In [63]:
len(ID)


Out[63]:
382

In [66]:
date


Out[66]:
array(['2015-01-01', '2015-01-02', '2015-01-03', '2015-01-04',
       '2015-01-05', '2015-01-06', '2015-01-07', '2015-01-08',
       '2015-01-09', '2015-01-10', '2015-01-11', '2015-01-12',
       '2015-01-13', '2015-01-14', '2015-01-15', '2015-01-16',
       '2015-01-17', '2015-01-18', '2015-01-19', '2015-01-20',
       '2015-01-21', '2015-01-22', '2015-01-23', '2015-01-24',
       '2015-01-25', '2015-01-26', '2015-01-27', '2015-01-28',
       '2015-01-29', '2015-01-30', '2015-01-31', '2015-02-01',
       '2015-02-02', '2015-02-03', '2015-02-04', '2015-02-05',
       '2015-02-06', '2015-02-07', '2015-02-08', '2015-02-09',
       '2015-02-10', '2015-02-11', '2015-02-12', '2015-02-13',
       '2015-02-14', '2015-02-15', '2015-02-16', '2015-02-17',
       '2015-02-18', '2015-02-19', '2015-02-20', '2015-02-21',
       '2015-02-22', '2015-02-23', '2015-02-24', '2015-02-25',
       '2015-02-26', '2015-02-27', '2015-02-28', '2015-03-01',
       '2015-03-02', '2015-03-03', '2015-03-04', '2015-03-05',
       '2015-03-06', '2015-03-07', '2015-03-08', '2015-03-09',
       '2015-03-10', '2015-03-11', '2015-03-12', '2015-03-13',
       '2015-03-14', '2015-03-15', '2015-03-16', '2015-03-17',
       '2015-03-18', '2015-03-19', '2015-03-20', '2015-03-21',
       '2015-03-22', '2015-03-23', '2015-03-24', '2015-03-25',
       '2015-03-26', '2015-03-27', '2015-03-28', '2015-03-29',
       '2015-03-30', '2015-03-31', '2015-04-01', '2015-04-02',
       '2015-04-03', '2015-04-04', '2015-04-05', '2015-04-06',
       '2015-04-07', '2015-04-08', '2015-04-09', '2015-04-10',
       '2015-04-11', '2015-04-12', '2015-04-13', '2015-04-14',
       '2015-04-15', '2015-04-16', '2015-04-17', '2015-04-18',
       '2015-04-19', '2015-04-20', '2015-04-21', '2015-04-22',
       '2015-04-23', '2015-04-24', '2015-04-25', '2015-04-26',
       '2015-04-27', '2015-04-28', '2015-04-29', '2015-04-30',
       '2015-05-01', '2015-05-02', '2015-05-03', '2015-05-04',
       '2015-05-05', '2015-05-06', '2015-05-07', '2015-05-08',
       '2015-05-09', '2015-05-10', '2015-05-11', '2015-05-12',
       '2015-05-13', '2015-05-14', '2015-05-15', '2015-05-16',
       '2015-05-17', '2015-05-18', '2015-05-19', '2015-05-20',
       '2015-05-21', '2015-05-22', '2015-05-23', '2015-05-24',
       '2015-05-25', '2015-05-26', '2015-05-27', '2015-05-28',
       '2015-05-29', '2015-05-30', '2015-05-31', '2015-06-01',
       '2015-06-02', '2015-06-03', '2015-06-04', '2015-06-05',
       '2015-06-06', '2015-06-07', '2015-06-08', '2015-06-09',
       '2015-06-10', '2015-06-11', '2015-06-12', '2015-06-13',
       '2015-06-14', '2015-06-15', '2015-06-16', '2015-06-17',
       '2015-06-18', '2015-06-19', '2015-06-20', '2015-06-21',
       '2015-06-22', '2015-06-23', '2015-06-24', '2015-06-25',
       '2015-06-26', '2015-06-27', '2015-06-28', '2015-06-29',
       '2015-06-30', '2015-07-01', '2015-07-02', '2015-07-03',
       '2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',
       '2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11',
       '2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15',
       '2015-07-16', '2015-07-17', '2015-07-18', '2015-07-19',
       '2015-07-20', '2015-07-21', '2015-07-22', '2015-07-23',
       '2015-07-24', '2015-07-25', '2015-07-26', '2015-07-27',
       '2015-07-28', '2015-07-29', '2015-07-30', '2015-07-31',
       '2015-08-01', '2015-08-02', '2015-08-03', '2015-08-04',
       '2015-08-05', '2015-08-06', '2015-08-07', '2015-08-08',
       '2015-08-09', '2015-08-10', '2015-08-11', '2015-08-12',
       '2015-08-13', '2015-08-14', '2015-08-15', '2015-08-16',
       '2015-08-17', '2015-08-18', '2015-08-19', '2015-08-20',
       '2015-08-21', '2015-08-22', '2015-08-23', '2015-08-24',
       '2015-08-25', '2015-08-26', '2015-08-27', '2015-08-28',
       '2015-08-29', '2015-08-30', '2015-08-31', '2015-09-01',
       '2015-09-02', '2015-09-03', '2015-09-04', '2015-09-05',
       '2015-09-06', '2015-09-07', '2015-09-08', '2015-09-09',
       '2015-09-10', '2015-09-11', '2015-09-12', '2015-09-13',
       '2015-09-14', '2015-09-15', '2015-09-16', '2015-09-17',
       '2015-09-18', '2015-09-19', '2015-09-20', '2015-09-21',
       '2015-09-22', '2015-09-23', '2015-09-24', '2015-09-25',
       '2015-09-26', '2015-09-27', '2015-09-28', '2015-09-29',
       '2015-09-30', '2015-10-01', '2015-10-02', '2015-10-03',
       '2015-10-04', '2015-10-05', '2015-10-06', '2015-10-07',
       '2015-10-08', '2015-10-09', '2015-10-10', '2015-10-11',
       '2015-10-12', '2015-10-13', '2015-10-14', '2015-10-15',
       '2015-10-16', '2015-10-17', '2015-10-18', '2015-10-19',
       '2015-10-20', '2015-10-21', '2015-10-22', '2015-10-23',
       '2015-10-24', '2015-10-25', '2015-10-26', '2015-10-27',
       '2015-10-28', '2015-10-29', '2015-10-30', '2015-10-31',
       '2015-11-01', '2015-11-02', '2015-11-03', '2015-11-04',
       '2015-11-05', '2015-11-06', '2015-11-07', '2015-11-08',
       '2015-11-09', '2015-11-10', '2015-11-11', '2015-11-12',
       '2015-11-13', '2015-11-14', '2015-11-15', '2015-11-16',
       '2015-11-17', '2015-11-18', '2015-11-19', '2015-11-20',
       '2015-11-21', '2015-11-22', '2015-11-23', '2015-11-24',
       '2015-11-25', '2015-11-26', '2015-11-27', '2015-11-28',
       '2015-11-29', '2015-11-30', '2015-12-01', '2015-12-02',
       '2015-12-03', '2015-12-04', '2015-12-05', '2015-12-06',
       '2015-12-07', '2015-12-08', '2015-12-09', '2015-12-10',
       '2015-12-11', '2015-12-12', '2015-12-13', '2015-12-14',
       '2015-12-15', '2015-12-16', '2015-12-17', '2015-12-18',
       '2015-12-19', '2015-12-20', '2015-12-21', '2015-12-22',
       '2015-12-23', '2015-12-24', '2015-12-25', '2015-12-26',
       '2015-12-27', '2015-12-28', '2015-12-29', '2015-12-30', '2015-12-31'], dtype=object)

In [71]:
len(ID)


Out[71]:
382

In [72]:
DATA_DC_std_final.shape


Out[72]:
(365, 380)

In [73]:
DATA_DC_std_final


Out[73]:
array([[  9.18298256e-02,   7.69874827e-02,   7.48233378e-02, ...,
          3.05043804e-01,   1.81773931e-01,   1.35905213e+02],
       [  8.50574659e-02,   7.56067788e-02,   9.60450252e-02, ...,
          1.94220546e+00,   1.40502242e+00,   1.89762477e+02],
       [  6.71859278e-02,   8.57379470e-02,   9.64137381e-02, ...,
          1.45908860e-01,   6.85809862e-01,   2.74516171e+01],
       ..., 
       [  8.71684110e-02,   1.05531781e-01,   1.03264721e-01, ...,
          1.31353913e+00,   4.99144386e+00,   1.23894212e+00],
       [  4.95968497e-02,   1.04620538e-01,   8.48963302e-02, ...,
          1.80628758e+00,   5.63193710e+00,   1.60923984e+00],
       [  6.65027443e-02,   5.06216604e-02,   9.31773175e-02, ...,
          4.81908087e+00,   2.47336636e+00,   2.29587383e+00]])

In [76]:
df_DCstd = pd.DataFrame(data = np.hstack((DATA_DC_std_final, date.reshape([-1,1]))), columns=ID[:-1])
df_DCstd.set_index('date')
df_DC = pd.DataFrame(data = np.hstack((DATA_DC_final, date.reshape([-1,1]))), columns=ID[:-1])
df_DC.set_index('date')


Out[76]:
2134 3245 4356 5467 6578 7689 87910 981011 1091112 11101213 ... 36354445 37364546 38374647 39384748 40394849 41404950 42415051 43425152 44435253 45445354
date
2015-01-01 63.8435 66.0997 67.6907 89.4797 81.0441 76.8638 81.0903 69.4503 52.6298 88.1749 ... 110.359 84.2553 96.4511 99.1321 82.5125 77.3529 75.411 70.7458 66.1388 151.8
2015-01-02 64.1266 66.3452 67.9904 89.9214 81.3556 76.9514 81.6516 69.8965 53.0818 88.5745 ... 110.511 83.8233 96.3742 99.1411 82.5272 77.5084 77.3286 72.017 64.5944 196.191
2015-01-03 64.3166 66.5672 68.2552 90.2055 81.6469 77.0259 81.9475 70.4097 53.8211 88.8106 ... 110.341 83.6864 96.2424 99.0359 82.4344 77.3507 76.9842 72.1312 64.6917 44.894
2015-01-04 38.6869 40.1053 41.1478 54.2852 49.2244 46.2452 49.6201 42.2292 31.949 53.561 ... 66.4783 50.2957 58.0098 59.6831 49.6465 47.0133 48.41 43.7154 35.1429 76.8739
2015-01-05 12.9201 13.4114 13.7671 18.1572 16.4497 15.4797 16.6515 14.0976 10.6175 17.9115 ... 22.1307 16.7422 19.3394 19.8717 16.5371 15.86 16.3996 14.2587 11.8562 82.6108
2015-01-06 64.7369 67.1685 69.5709 90.8841 82.2246 78.0032 84.0822 70.3324 52.3622 89.8379 ... 110.265 84.5889 97.2581 99.5777 83.0315 81.6846 83.4658 68.4341 58.0133 83.7678
2015-01-07 64.6879 67.2001 69.7287 91.091 80.5328 80.3128 84.07 70.4582 52.4744 89.7672 ... 109.711 84.5996 97.1693 98.7176 82.8042 77.5627 74.5962 70.3918 66.4746 81.434
2015-01-08 64.7544 67.2778 69.9757 91.4985 80.6563 80.751 84.0332 70.6868 52.874 90.0406 ... 109.484 84.7348 97.2603 98.5581 82.9535 77.5061 72.8522 70.3584 65.4076 80.8098
2015-01-09 64.8425 67.4371 70.1505 91.7709 81.0182 81.4423 83.7561 70.6971 52.9531 90.427 ... 109.374 85.1872 97.3056 98.6344 82.9207 78.1717 101.677 85.0221 60.6745 68.1954
2015-01-10 65.0032 67.6553 70.3889 92.1649 82.9333 79.5121 83.9696 70.978 53.4017 90.7893 ... 109.634 85.8403 97.4961 99.0931 82.9269 77.9179 94.0466 84.7326 64.2806 240.474
2015-01-11 65.1285 67.8127 70.4738 92.4471 83.8211 78.3505 84.3805 71.002 53.2683 91.0886 ... 109.832 86.1021 97.3717 99.3295 82.9049 78.0745 92.3736 83.8458 64.6419 400.206
2015-01-12 65.1978 67.9244 70.5266 92.6201 83.9795 78.319 84.6486 71.1099 53.2491 91.263 ... 109.871 85.471 97.1382 99.2406 82.7963 77.656 80.5954 76.9639 66.6256 80.782
2015-01-13 65.5597 68.1364 70.7198 92.9368 84.2801 78.3576 85.0926 71.6283 53.8277 91.6569 ... 110.721 85.1634 97.2501 99.5664 82.9682 77.975 88.9364 82.6323 64.8025 256.143
2015-01-14 66.0347 68.201 71.0369 92.8713 84.7627 77.8831 85.4771 71.8277 54.2533 91.9712 ... 110.856 85.2969 97.5221 99.6585 83.0327 78.4381 94.0812 86.1293 64.7595 86.1258
2015-01-15 66.0422 68.4587 71.0062 93.2097 84.5544 78.9377 86.0543 71.9125 54.2122 92.2648 ... 111.166 84.8558 97.6584 99.5393 83.1209 78.2888 86.7395 81.8434 66.2151 81.2831
2015-01-16 66.0978 68.536 71.0596 93.3991 84.4993 79.2379 86.4733 72.1688 54.045 92.4689 ... 111.074 84.8535 97.6109 99.3916 83.0541 78.8486 106.611 90.2709 60.8124 81.17
2015-01-17 66.1789 68.6152 71.125 93.5174 84.5846 79.3491 86.6401 72.4021 54.2754 92.6201 ... 110.985 85.2392 97.5657 99.3006 82.9761 78.131 82.5667 78.9442 66.534 76.7331
2015-01-18 66.2807 68.7939 71.3338 93.8778 84.8447 79.4951 86.8503 72.886 54.8725 92.916 ... 110.664 85.3161 97.5108 99.1219 82.8658 78.239 98.1446 86.9656 61.7902 81.0359
2015-01-19 66.4084 68.9865 71.5737 93.9862 85.1684 79.5663 87.3724 72.9841 54.6623 93.2836 ... 110.968 85.5434 97.8999 99.2768 83.0598 78.8565 102.853 91.7943 63.0376 81.7021
2015-01-20 66.4362 69.0789 71.6424 94.1959 85.2952 79.6394 87.527 73.1589 54.7419 93.4146 ... 110.626 85.6373 97.7772 99.0495 82.9377 78.571 95.9348 88.9963 63.5811 81.481
2015-01-21 66.5728 69.2777 71.8569 94.4128 85.4672 80.0305 87.8714 73.4379 54.8452 93.7026 ... 110.936 85.8918 98.0435 99.2034 83.0643 78.7536 101.163 90.9031 61.2592 81.6693
2015-01-22 66.6586 69.3919 71.9935 94.4834 85.5374 80.4801 88.223 73.4181 54.5172 93.9231 ... 110.304 86.5263 98.1731 99.1569 82.9201 83.8498 127.156 108.216 58.2112 82.8648
2015-01-23 66.8745 69.4323 72.0034 94.7379 85.4705 80.7883 88.4101 73.4011 54.3112 94.1111 ... 109.49 86.783 98.4478 98.9568 83.0485 81.4606 121.738 98.1922 53.3672 82.9331
2015-01-24 67.0606 69.5765 72.1514 94.9547 85.5798 81.1007 88.6735 73.6179 54.447 94.3798 ... 109.634 87.2337 98.7685 98.8521 83.5083 78.8757 104.713 92.6442 59.807 82.9427
2015-01-25 67.0912 69.642 72.2338 95.1243 85.519 81.4296 88.8313 73.8073 54.5445 94.5164 ... 109.614 87.5091 98.7329 98.7707 83.5733 80.5123 118.453 97.7392 53.5346 83.2605
2015-01-26 67.0714 69.6887 72.289 95.03 85.6185 81.546 89.0717 73.6462 54.036 94.5305 ... 109.91 87.3338 98.7509 98.8629 83.7169 87.0499 121.817 108.291 55.835 82.6606
2015-01-27 67.0271 69.6962 72.3493 95.1431 85.3885 81.9645 88.9897 73.9195 54.5073 94.6813 ... 109.71 87.5486 98.4908 98.7204 83.64 78.2012 83.3143 82.189 66.4537 82.7567
2015-01-28 66.9051 69.8216 72.4026 95.4682 85.5615 81.9065 88.9303 74.1626 54.8862 94.7708 ... 109.441 87.5351 98.2579 98.5321 83.4517 77.8579 82.7273 80.9534 66.3598 82.2862
2015-01-29 67.0931 69.9856 72.6038 95.8029 85.9521 82.0559 89.1452 74.582 55.2848 95.162 ... 109.347 88.2951 98.5745 98.8312 83.7101 78.0145 85.1193 83.4296 66.292 82.3122
2015-01-30 67.2265 70.0534 72.7259 95.9301 86.2645 81.8589 89.3563 74.7503 55.5082 95.3222 ... 109.303 88.4042 98.5887 99.0366 83.4031 77.9823 84.2015 82.1358 66.4374 82.2636
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2015-12-02 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-03 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-05 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-06 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-07 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-08 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-09 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-12 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-13 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-14 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-15 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-16 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-17 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-18 60.4948 64.0526 66.0747 87.0553 77.5951 77.294 80.0428 67.2934 50.3255 83.6826 ... 89.2559 77.2279 104.1 102.569 84.4492 81.3283 75.6412 83.1061 72.4988 97.2807
2015-12-19 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015-12-20 60.7762 64.2869 66.2369 87.3776 77.6984 77.5245 80.1479 66.6817 49.6041 83.9267 ... 76.7287 66.5889 104.695 104.825 84.5448 82.893 74.7189 85.6549 71.1145 101.232
2015-12-21 60.9198 64.4514 66.251 87.7588 77.5358 79.4867 80.6228 65.7685 48.8547 84.1981 ... 84.0896 73.1135 105.249 106.113 84.5578 82.2235 75.3681 86.6139 71.4747 100.269
2015-12-22 60.9821 64.5592 66.064 88.6287 78.3227 78.3736 79.9984 66.0705 49.8457 84.307 ... 85.1527 74.2462 104.785 108.688 84.1037 82.2443 73.0869 91.0303 71.7693 101.047
2015-12-23 61.1329 65.6483 64.8872 88.5553 79.4796 76.8742 80.1775 66.4781 50.203 84.3372 ... 79.102 69.984 105.035 110.761 84.1247 82.6329 72.2455 93.9754 69.4701 102.733
2015-12-24 61.3869 65.9965 64.2426 88.453 79.556 76.4227 80.7595 67.0554 50.6257 84.4625 ... 91.7657 78.9481 104.77 106.783 84.2643 81.8898 74.8732 90.246 70.1662 98.9394
2015-12-25 61.7064 66.1242 64.1761 88.5892 79.5884 76.5556 81.2072 67.4102 51.0682 84.7919 ... 108.119 90.9172 104.469 102.326 84.3311 80.7244 77.5977 79.9972 67.9625 95.3292
2015-12-26 62.0499 66.2699 64.17 88.8987 79.5409 76.6051 81.8735 67.6459 51.3019 85.0445 ... 109.407 92.8032 104.74 105.005 84.1778 81.1575 77.3467 82.5786 73.0625 94.3514
2015-12-27 62.253 66.2892 64.3528 89.2046 79.4985 76.8444 82.2759 67.9649 51.6012 85.2876 ... 111.483 92.4842 104.261 101.721 84.102 80.6633 77.8721 78.8345 67.3613 94.2932
2015-12-28 62.4231 66.3721 64.4575 89.827 79.6304 77.0146 82.8089 68.5421 52.2542 85.5874 ... 111.701 92.9049 104.288 102.916 83.8979 80.5931 77.6967 79.9056 69.5441 93.2352
2015-12-29 62.6342 66.5328 64.7304 90.3115 79.7114 77.4118 83.3768 68.9587 52.6016 85.8828 ... 113.385 93.6185 104.674 103.904 83.9856 80.9981 77.435 81.5359 74.5301 92.9706
2015-12-30 62.8689 66.8061 64.834 90.7823 79.8114 77.7134 84.0817 69.2651 52.6426 86.2174 ... 112.701 91.2486 105.001 105.382 84.2332 81.5697 76.8694 82.763 77.7329 93.169
2015-12-31 63.0697 66.9187 65.0164 90.9383 79.9296 77.8161 84.5502 69.3432 52.34 86.3772 ... 82.6317 64.6329 104.808 109.338 83.9499 84.2479 77.0956 84.9949 71.5539 97.5374

365 rows × 380 columns


In [77]:
df.to_csv("../data/ChungCheonDC/CompositeETCdata.csv")
df_DC.to_csv("../data/ChungCheonDC/CompositeDCdata.csv")
df_DCstd.to_csv("../data/ChungCheonDC/CompositeDCstddata.csv")