In [1]:
from SimPEG import *
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [2]:
cs, ncx, ncy, ncz, npad = 20., 30, 20, 30, 12
hx = [(cs,npad,-1.4), (cs,ncx), (cs,npad,1.4)]
hy = [(cs,npad,-1.4), (cs,ncy), (cs,npad,1.4)]
hz = [(cs,npad,-1.4), (cs,ncz), (cs,npad,1.4)]
mesh = Mesh.TensorMesh([hx,hy,hz], 'CCC')
print ("Padding distance x: %10.5f m") % (np.sum(mesh.hx[:npad]))
print ("Padding distance z: %10.5f m") % (np.sum(mesh.hz[:npad]))
print ("Min dx: %10.5f m") % (mesh.hx.min())
print ("Min dz: %10.5f m") % (mesh.hz.min())


Padding distance x: 3898.57387 m
Padding distance z: 3898.57387 m
Min dx:   20.00000 m
Min dz:   20.00000 m

In [3]:
print mesh


  ---- 3-D TensorMesh ----  
   x0: -4198.57
   y0: -4098.57
   z0: -4198.57
  nCx: 54
  nCy: 44
  nCz: 54
   hx: 1133.88, 809.91, 578.51, 413.22, 295.16, 210.83, 150.59, 107.56, 76.83, 54.88, 39.20, 28.00, 30*20.00, 28.00, 39.20, 54.88, 76.83, 107.56, 150.59, 210.83, 295.16, 413.22, 578.51, 809.91, 1133.88
   hy: 1133.88, 809.91, 578.51, 413.22, 295.16, 210.83, 150.59, 107.56, 76.83, 54.88, 39.20, 28.00, 20*20.00, 28.00, 39.20, 54.88, 76.83, 107.56, 150.59, 210.83, 295.16, 413.22, 578.51, 809.91, 1133.88
   hz: 1133.88, 809.91, 578.51, 413.22, 295.16, 210.83, 150.59, 107.56, 76.83, 54.88, 39.20, 28.00, 30*20.00, 28.00, 39.20, 54.88, 76.83, 107.56, 150.59, 210.83, 295.16, 413.22, 578.51, 809.91, 1133.88

In [4]:
def circfun(xc, yc, r, npoint):
    theta = np.linspace(np.pi, -np.pi, npoint)
    x = r*np.cos(theta)
    y = r*np.sin(theta)
    return x+xc, y+yc

In [5]:
xcirc1, ycirc1 = circfun(-150., 0., 250., 60)
xcirc2, ycirc2 = circfun(150., 0., 250., 60)

In [6]:
Utils.meshutils.writeUBCTensorMesh(mesh, 'mesh.msh')

In [7]:
sigma = Utils.meshutils.readUBCTensorModel('sigma_realistic.con', mesh)

In [8]:
mopt = np.load('./inv3D_realistic/model_12.npy')
active = mesh.gridCC[:,2] < 0.
actMap = Maps.ActiveCells(mesh, active, np.log(1e-8), nC=mesh.nC)
mapping = Maps.ExpMap(mesh) * actMap

In [9]:
Utils.meshutils.writeUBCTensorModel(mesh, mapping*mopt, 'sigest3D_realistic.con')

In [10]:
x1 = np.arange(30)*10 - 300.
y1 = np.arange(30)*10 - 150.
xyz1 = Utils.ndgrid(x1, y1, np.r_[0.])
x2 = np.arange(30)*10 + 10.
y2 = np.arange(30)*10 - 150.
xyz2 = Utils.ndgrid(x2, y2, np.r_[0.])

In [11]:
fig, ax = plt.subplots(1,2, figsize=(18,6))
indz1 = 20
indz2 = indz1
print mesh.vectorCCz[indz1]
mesh.plotSlice(np.log10(sigma), ind = indz1, ax = ax[0], clim=(-3, -0.5))
mesh.plotSlice(np.log10(mapping*mopt), ind = indz2, ax = ax[1], clim=(-3, -0.5))

for i in range(2):
    ax[i].plot(xyz1[:,0], xyz1[:,1], 'r.')
    ax[i].plot(xyz2[:,0], xyz2[:,1], 'b.')
#     ax[i].plot(xcirc1, ycirc1, 'r-')
#     ax[i].plot(xcirc2, ycirc2, 'b-')
    ax[i].set_xlim(-320, 320)
    ax[i].set_ylim(-150, 150)


-130.0

In [12]:
indy=20
fig, ax = plt.subplots(1,2, figsize=(16,4))
print mesh.vectorCCy[indy]
dat0 = mesh.plotSlice(np.log10(sigma), normal='Y', ind = indy, ax = ax[0], clim=(-3, -1))
dat1 = mesh.plotSlice(np.log10(mapping*mopt), normal='Y', ind = indy, ax = ax[1], clim=(-3, -1))
for i in range(2):
    plt.colorbar(dat0[0], ax = ax[i])
    ax[i].set_xlim(-300, 300)
    ax[i].set_ylim(-700, 0.)


-30.0

In [13]:
indy=23
fig, ax = plt.subplots(1,2, figsize=(16,4))
print mesh.vectorCCy[indy]
dat0 = mesh.plotSlice(np.log10(sigma), normal='Y', ind = indy, ax = ax[0], clim=(-3, -0.5))
dat1 = mesh.plotSlice(np.log10(mapping*mopt), normal='Y', ind = indy, ax = ax[1], clim=(-3, -0.5))
for i in range(2):
    plt.colorbar(dat0[0], ax = ax[i])
    ax[i].set_xlim(-300, 300)
    ax[i].set_ylim(-700, 0.)


30.0

In [14]:
import simpegEM as EM
mapping = Maps.IdentityMap(mesh)

In [15]:
ntx = 2
nrx1 = xyz1.shape[0]
time = np.logspace(-3, 0, 31)

In [16]:
print time[20]


0.1

In [17]:
rx1 = EM.TDEM.RxTDEM(xyz1, time, 'bz')
tx1 = EM.TDEM.TxTDEM(np.array([0., -150., 0.]), 'CircularLoop_MVP', [rx1])
tx1.radius = 250.
rx2 = EM.TDEM.RxTDEM(xyz2, time, 'bz')
tx2 = EM.TDEM.TxTDEM(np.array([0.,  150., 0.]), 'CircularLoop_MVP', [rx2])
tx2.radius = 250.

In [18]:
# survey = EM.TDEM.SurveyTDEM([tx1, tx2])
survey = EM.TDEM.SurveyTDEM([tx1])
prb = EM.TDEM.ProblemTDEM_b(mesh, mapping=mapping, verbose=True)
# prb.solver = MumpsSolver
# prb.solverOpts = {"symmetric":True}
# prb.timeSteps = [(1e-4/15, 10), (1e-3/15, 10), (1e-2/15, 5)]
prb.timeSteps = [(1e-4/15, 10)]
if prb.ispaired:
    prb.unpair()
if survey.ispaired:
    survey.unpair()
prb.pair(survey)

In [19]:
dpred = np.load('bz_realistic_late.npy')

In [20]:
noise = abs(dpred)*np.random.randn(dpred.size)*0.02
dobs = dpred

In [21]:
# dest = np.load('inv3D_realistic/dpred_12.npy')

In [22]:
Dpred = dobs.reshape((900, 31, 2), order='F')
Dpred1 = Dpred[:,:,0]
Dpred2 = Dpred[:,:,1]
# Dest = dest.reshape((900, 31, 2), order='F')
# Dest1 = Dest[:,:,0]
# Dest2 = Dest[:,:,1]

In [25]:
print time[20]


0.1

In [26]:
itime = 21
fig, ax = plt.subplots(1,2, figsize = (12, 5))
for i in range(2):
    ax[i].set_xlabel('x (m)', fontsize = 16)
    ax[i].set_ylabel('y (m)', fontsize = 16)
vmin = Utils.mkvc(Dpred[:,itime,0]).min()
vmax = Utils.mkvc(Dpred[:,itime,0]).max()
dat1 = ax[0].contourf(xyz1[:,0].reshape((30, 30), order='F'), xyz1[:,1].reshape((30, 30), order='F'),  Dpred[:,itime,0].reshape((30, 30), order='F'), 30, vmin=vmin, vmax=vmax)
# dat1 = ax[1].contourf(xyz2[:,0].reshape((30, 30), order='F'), xyz2[:,1].reshape((30, 30), order='F'),  Dest[:,itime,0].reshape((30, 30), order='F'), 30, vmin=vmin, vmax=vmax)



In [24]:
itime = 20
fig, ax = plt.subplots(1,2, figsize = (12, 5))
for i in range(2):
    ax[i].set_xlabel('x (m)', fontsize = 16)
    ax[i].set_ylabel('y (m)', fontsize = 16)
vmin = Utils.mkvc(Dpred[:,itime,1]).min()
vmax = Utils.mkvc(Dpred[:,itime,1]).max()    
dat1 = ax[0].contourf(xyz1[:,0].reshape((30, 30), order='F'), xyz1[:,1].reshape((30, 30), order='F'),  Dpred[:,itime,1].reshape((30, 30), order='F'), 30)
# dat1 = ax[1].contourf(xyz2[:,0].reshape((30, 30), order='F'), xyz2[:,1].reshape((30, 30), order='F'),  Dest[:,itime,1].reshape((30, 30), order='F'), 30)



In [61]:
rxind = 20
plt.loglog(time, Dpred[rxind,:,0])
# plt.loglog(time, Dest[rxind,:,0])


Out[61]:
[<matplotlib.lines.Line2D at 0xb6976a0>]

In [33]:
itime = 0
fig, ax = plt.subplots(1,2, figsize = (10, 4))
ax[0].hist(Dpred1[:,itime])
ax[1].hist(Dpred2[:,itime])


Out[33]:
(array([   7.,   18.,   23.,   43.,   68.,  108.,  201.,  240.,  175.,   17.]),
 array([  4.30301944e-10,   5.51865220e-10,   6.73428496e-10,
          7.94991772e-10,   9.16555048e-10,   1.03811832e-09,
          1.15968160e-09,   1.28124488e-09,   1.40280815e-09,
          1.52437143e-09,   1.64593470e-09]),
 <a list of 10 Patch objects>)

In [35]:
# from JSAnimation import IPython_display
# from matplotlib import animation
# fig, ax = plt.subplots(1,2, figsize = (12, 5))
# for i in range(2):
#     ax[i].set_xlabel('x (m)', fontsize = 16)
#     ax[i].set_ylabel('y (m)', fontsize = 16)

# def animate(itime):
#     frame1 = ax[0].contourf(xyz1[:,0].reshape((30, 30), order='F'), xyz1[:,1].reshape((30, 30), order='F'),  Dpred[:,itime,0].reshape((30, 30), order='F'), 30)
#     frame2 = ax[1].contourf(xyz2[:,0].reshape((30, 30), order='F'), xyz2[:,1].reshape((30, 30), order='F'),  Dpred[:,itime,1].reshape((30, 30), order='F'), 30)
# #     cb1 = plt.colorbar(frame1, ax = ax[0])
# #     cb2 = plt.colorbar(frame2, ax = ax[1])    
#     return frame1, frame2
# animation.FuncAnimation(fig, animate, frames=31, interval=40, blit=True)

In [ ]:
# np.save('bzobs_realistic', dobs)
# dmis = DataMisfit.l2_DataMisfit(survey)

In [ ]: