In [1]:
from SimPEG import *
import simpegEM as EM
from simpegem1d import Utils1D
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [2]:
mesh3D = Utils.meshutils.readUBCTensorMesh('mesh.msh')
sigma3D = Utils.meshutils.readUBCTensorModel('sigma_realistic.con', mesh3D)

In [3]:
x1 = np.arange(30)*10 - 300.
y1 = np.arange(30)*10 - 150.
xyz1 = Utils.ndgrid(x1, y1, np.r_[0.])
xc1 = -150
yc1 = 0.
r1 = np.sqrt((xyz1[:,0]-xc1)**2+(xyz1[:,1]-yc1)**2)

In [7]:
frequency = np.r_[1., 10., 100.]

In [9]:
dobs = np.load('bzobs_FD_realistic.npy')
Dobs = dobs.reshape((900, 2, frequency.size, 2), order='F')
Dobsr1 = Dobs[:,0,:,0]
Dobsi1 = Dobs[:,1,:,0]
Dobsr2 = Dobs[:,0,:,1]
Dobsi2 = Dobs[:,1,:,1]

In [10]:
meshType = 'CYL'
cs, ncx, ncz, npad = 20., 25, 30, 12
hx = [(cs,ncx), (cs,npad,1.3)]
hz = [(cs,npad,-1.4), (cs,ncz), (cs,npad,1.4)]
mesh = Mesh.CylMesh([hx,1,hz], '00C')

In [11]:
active = mesh.vectorCCz<0.
layer1 = (mesh.vectorCCz<0.) & (mesh.vectorCCz>=-60.)
layer2 = (mesh.vectorCCz<-60) & (mesh.vectorCCz>=-100.)
layer3 = (mesh.vectorCCz<-100) & (mesh.vectorCCz>=-200.)
actMap = Maps.ActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
mapping = Maps.ExpMap(mesh) * Maps.Vertical1DMap(mesh) * actMap

In [12]:
sig_half = 1e-3
sig_air = 1e-8
sig_layer1 = 1./300
sig_layer2 = 1./100
sig_layer3 = 1./10
sigma = np.ones(mesh.nCz)*sig_air
sigma[active] = sig_half
sigma[layer1] = sig_layer1
sigma[layer2] = sig_layer2
sigma[layer3] = sig_layer3
mtrue = np.log(sigma[active])

In [13]:
xc = -100
yc = 100.
dind = np.argmin(abs( xyz1[:,0]-xc)+abs( xyz1[:,1]-yc))

In [14]:
def circfun(xc, yc, r, npoint):
    theta = np.linspace(np.pi, -np.pi, npoint)
    x = r*np.cos(theta)
    y = r*np.sin(theta)
    return x+xc, y+yc

In [15]:
xcirc1, ycirc1 = circfun(-150., 0., 250., 60)
xcirc2, ycirc2 = circfun(150., 0., 250., 60)

In [31]:
ind = np.argwhere(xyz1[:,1]==0.).flatten()

In [32]:
DobsLine = Dobs[ind,:,:,:]

In [77]:
plt.plot(DobsLine[0,0,:,1], 'b.-')
plt.plot(DobsLine[0,1,:,1], 'k.-')


Out[77]:
[<matplotlib.lines.Line2D at 0xf3c8cc0>]

In [34]:
print Dobs.shape
print DobsLine.shape


(900L, 2L, 3L, 2L)
(30L, 2L, 3L, 2L)

In [ ]:
# Dobs = dobs.reshape((900, 2, frequency.size, 2), order='F')
# Dobsr1 = Dobs[:,0,:,0]

In [17]:
fig, ax = plt.subplots(1,1, figsize=(7,3))
indz = 20
print mesh.vectorCCz[indz]
mesh3D.plotSlice(np.log10(sigma3D), ind = indz, ax = ax, clim=(-3, -0.5))
ax.plot(xyz1[:,0], xyz1[:,1], 'r.')
ax.plot(xyz1[ind,0], xyz1[ind,1], 'k.', ms=10)
# ax.plot(xyz2[:,0], xyz2[:,1], 'b.')
ax.plot(xcirc1, ycirc1, 'r-')
# ax.plot(xcirc2, ycirc2, 'b-')
ax.set_xlim(-500, 500)
ax.set_ylim(-300, 300)


-130.0
Out[17]:
(-300, 300)

In [18]:
sig_test = (sigma[active])

In [19]:
Sig_test = (sig_test.reshape([1,-1])).repeat(10, axis=0)
x = xyz1[ind,0]
z = mesh.vectorCCz[active]
Z, X = np.meshgrid(z, x)

In [20]:
z = mesh.vectorCCz[active]
Time, Xtime = np.meshgrid(time, x)

In [21]:
fig, ax = plt.subplots(1,1, figsize = (3, 6))
Utils1D.plotLayer(sig_test, mesh.vectorCCz[active], showlayers=True, ax = ax)
ax.set_ylim(-300., 0.)


Out[21]:
(-300.0, 0.0)

In [44]:
test = survey.dpred(np.log(sigma[active]))

In [22]:
prb = EM.FDEM.ProblemFDEM_b(mesh, mapping=mapping, verbose=False)

In [20]:
prb.Solver = SolverLU

In [137]:
# Mopt = []
# Dest=[]

# for i in range(r1[ind].size):
# # for i in range(1):
# #     i = 29
#     txList = []
#     for freq in frequency:
#         rxoffset=r1[ind][i]
#         rxr = EM.FDEM.RxFDEM(np.array([[rxoffset, 0., 0.]]),'bzr')
#         rxi = EM.FDEM.RxFDEM(np.array([[rxoffset, 0., 0.]]),'bzi')
#         tx = EM.FDEM.TxFDEM(np.array([0., 0., 0.]), 'CircularLoop', freq, [rxr, rxi])
#         tx.radius = 250.
#         txList.append(tx)

#     survey = EM.FDEM.SurveyFDEM(txList)
#     if prb.ispaired:
#         prb.unpair()
#     if survey.ispaired:
#         survey.unpair()
#     prb.pair(survey)
#     std = 0.2   
#     survey.dobs = Utils.mkvc(DobsLine[i,:,:,0])
#     survey.std = survey.dobs*0 + std
#     dmisfit = DataMisfit.l2_DataMisfit(survey)
#     dmisfit.Wd = 1/(abs(survey.dobs)*std+1e-12)
#     regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
#     reg = Regularization.Tikhonov(regMesh)
#     opt = Optimization.InexactGaussNewton(maxIter = 5)
#     invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
#     # Create an inversion object
#     beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
#     betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
#     inv = Inversion.BaseInversion(invProb, directiveList=[beta,betaest])
#     m0 = np.log(np.ones(mtrue.size)*2e-3)
#     reg.alpha_s = 1e-2
#     reg.alpha_x = 1.
#     prb.counter = opt.counter = Utils.Counter()
#     opt.LSshorten = 0.5
#     opt.remember('xc')
#     mopt = inv.run(m0)
#     Mopt.append(mopt)
#     Dest.append(invProb.dpred)

In [ ]:
# fig, ax = plt.subplots(1,1, figsize = (3, 6))
# Utils1D.plotLayer(np.exp(mopt), mesh.vectorCCz[active], showlayers=True, ax = ax)
# ax.set_ylim(-500., 0.)

In [99]:
# plt.semilogy(abs(invProb.dpred.reshape((2,3), order='F')[0,:]), 'b.-')
# plt.semilogy(abs(invProb.dpred.reshape((2,3), order='F')[1,:]), 'r.-')
# plt.semilogy(abs(survey.dobs.reshape((2,3), order='F')[0,:]), 'bo')
# plt.semilogy(abs(survey.dobs.reshape((2,3), order='F')[1,:]), 'ro')


Out[99]:
[<matplotlib.lines.Line2D at 0x1266ce80>]

In [138]:
# np.save('Mopt1_realistic_FD', Mopt)
# np.save('Dest1_realistic_FD', Dest)

In [115]:
Mopt = np.load('Mopt1_realistic_FD.npy')
Dest = np.load('Dest1_realistic_FD.npy')

In [123]:
SigMat = np.exp(np.vstack(Mopt))
DpreMat = np.vstack(Dest)
DpreMatR = DpreMat[:,[0,2,4]]
DpreMatI = DpreMat[:,[1,3,5]]

In [117]:
plt.pcolor(X, Z, np.log10(SigMat))
plt.ylim(-700, 0.)


Out[117]:
(-700, 0.0)

In [131]:
plt.semilogy(xyz1[ind,0], -DpreMatR[:,0], 'k')
plt.semilogy(xyz1[ind,0], -DpreMatR[:,1], 'b')
plt.semilogy(xyz1[ind,0],-DpreMatR[:,2], 'r')
plt.semilogy(xyz1[ind,0], -DobsLine[:,0,0,0], 'ko')
plt.semilogy(xyz1[ind,0], -DobsLine[:,0,1,0], 'bo')
plt.semilogy(xyz1[ind,0],-DobsLine[:,0,2,0], 'ro')


Out[131]:
[<matplotlib.lines.Line2D at 0x152e50f0>]

In [132]:
plt.semilogy(xyz1[ind,0], -DpreMatI[:,0], 'k')
plt.semilogy(xyz1[ind,0], -DpreMatI[:,1], 'b')
plt.semilogy(xyz1[ind,0],-DpreMatI[:,2], 'r')
plt.semilogy(xyz1[ind,0], -DobsLine[:,1,0,0], 'ko')
plt.semilogy(xyz1[ind,0], -DobsLine[:,1,1,0], 'bo')
plt.semilogy(xyz1[ind,0],-DobsLine[:,1,2,0], 'ro')


Out[132]:
[<matplotlib.lines.Line2D at 0x1530d438>]

In [136]:
fig, ax = plt.subplots(1,2, figsize = (12, 5))
vmin = np.log10(Utils.mkvc(SigMat).min())
vmax = np.log10(Utils.mkvc(SigMat).max())
ax[0].pcolor(X, Z, np.log10(SigMat), vmin = -3, vmax = -1)
mesh3D.plotSlice(np.log10(sigma3D), ind = 20, normal='Y', ax = ax[1], clim=(-3, -1))
for i in range(2):
    ax[i].set_ylim(-700., -10.)
    ax[i].set_xlim(-300., -10.)



In [ ]: