In [6]:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

In [7]:
info = {'VAR': ['1,25(OH)D3', 'Site', 'Race'],
        'ES_IND': [0.06705342, 0.02470355, 0.02282282],
        'ES_CUL': [0.02674177, 0.02175614, 0.01713566]}
dat = pd.DataFrame(info, columns=['VAR', 'ES_IND', 'ES_CUL'])

In [8]:
dat


Out[8]:
VAR ES_IND ES_CUL
0 1,25(OH)D3 0.067053 0.026742
1 Site 0.024704 0.021756
2 Race 0.022823 0.017136

In [9]:
sns.set(style="whitegrid")

# Plot cumulative effect size
sns.set_color_codes("muted")
ax = sns.barplot(x="ES_CUL", y="VAR", data=dat,
            label="Dependent", color="b")
ax.set_xlabel('Effect Size', fontsize=16)
ax.set_ylabel('Non-redundant Covariates', fontsize=16)

ax = ax.get_figure()
ax.tight_layout()
ax.savefig('../figures/RDA_Shannon_alpha.pdf')
ax.savefig('../figures/RDA_Shannon_alpha.png')



In [ ]: