In [6]:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
In [7]:
info = {'VAR': ['1,25(OH)D3', 'Site', 'Race'],
'ES_IND': [0.06705342, 0.02470355, 0.02282282],
'ES_CUL': [0.02674177, 0.02175614, 0.01713566]}
dat = pd.DataFrame(info, columns=['VAR', 'ES_IND', 'ES_CUL'])
In [8]:
dat
Out[8]:
In [9]:
sns.set(style="whitegrid")
# Plot cumulative effect size
sns.set_color_codes("muted")
ax = sns.barplot(x="ES_CUL", y="VAR", data=dat,
label="Dependent", color="b")
ax.set_xlabel('Effect Size', fontsize=16)
ax.set_ylabel('Non-redundant Covariates', fontsize=16)
ax = ax.get_figure()
ax.tight_layout()
ax.savefig('../figures/RDA_Shannon_alpha.pdf')
ax.savefig('../figures/RDA_Shannon_alpha.png')
In [ ]: