Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [51]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

# Use Floyd's cifar-10 dataset if present
floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
if isfile(floyd_cifar10_location):
    tar_gz_path = floyd_cifar10_location
else:
    tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [52]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 14
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 14:
Image - Min Value: 1 Max Value: 255
Image - Shape: (32, 32, 3)
Label - Label Id: 9 Name: truck

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [53]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    return x.astype(np.float32, copy=False) / float(255.0)

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [54]:
from sklearn import preprocessing

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    one_hot_binarizer = preprocessing.LabelBinarizer()
    one_hot_binarizer.fit(range(0, 10))
    return one_hot_binarizer.transform(x)

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [55]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [56]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

If you're finding it hard to dedicate enough time for this course a week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use TensorFlow Layers or TensorFlow Layers (contrib) to build each layer, except "Convolutional & Max Pooling" layer. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

If you would like to get the most of this course, try to solve all the problems without TF Layers. Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [57]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    return tf.placeholder(tf.float32,
                          [None, image_shape[0], image_shape[1], image_shape[2]],
                          name='x')


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    return tf.placeholder(tf.float32,
                          [None, n_classes],
                          name='y')


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    return tf.placeholder(tf.float32, name='keep_prob')



"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer. You're free to use any TensorFlow package for all the other layers.


In [58]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernel size 2-D Tuple for convolution
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    height = conv_ksize[0]
    width = conv_ksize[1]
    input_depth = x_tensor.get_shape().as_list()[3]
    output_depth = conv_num_outputs

    filter_weights = tf.Variable(tf.random_normal([height, width, input_depth, output_depth], mean=0.0, stddev=0.05))
    filter_bias = tf.Variable(tf.random_normal([output_depth]))

    # the stride for each dimension (batch_size, height, width, depth)
    conv_strides_dims = [1, conv_strides[0], conv_strides[1], 1]
    padding = 'SAME'

    #print("neural net is being created...")
    # https://www.tensorflow.org/versions/r0.11/api_docs/python/nn.html#conv2d
    # `tf.nn.conv2d` does not include the bias computation so we have to add it ourselves after.
    convolution = tf.nn.conv2d(x_tensor, filter_weights, conv_strides_dims, padding) + filter_bias

    # batch normalization on convolution
    convolution = tf.contrib.layers.batch_norm(convolution, center=True, scale=True)
    #convolution = tf.nn.batch_normalization(convolution, mean=0.0, variance=1.0, offset=0.0, scale)

    # non-linear activation function
    convolution = tf.nn.elu(convolution)

    # the ksize (filter size) for each dimension (batch_size, height, width, depth)
    ksize = [1, pool_ksize[0], pool_ksize[1], 1]
    # the stride for each dimension (batch_size, height, width, depth)
    pool_strides_dims = [1, pool_strides[0], pool_strides[1], 1]

    # https://www.tensorflow.org/versions/r0.11/api_docs/python/nn.html#max_pool
    return tf.nn.max_pool(convolution, ksize, pool_strides_dims, padding)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). You can use TensorFlow Layers or TensorFlow Layers (contrib) for this layer.


In [59]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    return tf.contrib.layers.flatten(x_tensor)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). You can use TensorFlow Layers or TensorFlow Layers (contrib) for this layer.


In [60]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    return tf.contrib.layers.fully_connected(x_tensor, num_outputs, activation_fn=tf.nn.elu)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). You can use TensorFlow Layers or TensorFlow Layers (contrib) for this layer.

Note: Activation, softmax, or cross entropy shouldn't be applied to this.


In [61]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    #batch_size = x_tensor.get_shape().as_list()[1]
    #weight = tf.Variable(tf.random_normal([batch_size, num_outputs], mean=0.0, stddev=0.03))
    #bias = tf.Variable(tf.zeros(num_outputs))

    #output_layer = tf.add(tf.matmul(x_tensor, weight), bias)
    #return output_layer
    return tf.contrib.layers.fully_connected(x_tensor, num_outputs, activation_fn=None)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [64]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    conv_num_outputs1 = 32
    conv_num_outputs2 = 128
    conv_num_outputs3 = 512
    conv_ksize = (4, 4)
    conv_strides = (1, 1)
    pool_ksize = (4, 4)
    pool_strides = (2, 2)

    conv_layer1 = conv2d_maxpool(x, conv_num_outputs1, conv_ksize, conv_strides, pool_ksize, pool_strides)
    conv_layer1 = tf.nn.dropout(conv_layer1, tf.to_float(keep_prob))
    conv_layer2 = conv2d_maxpool(conv_layer1, conv_num_outputs2, conv_ksize, conv_strides, pool_ksize, pool_strides)
    #conv_layer2 = tf.nn.dropout(conv_layer2, tf.to_float(keep_prob))
    conv_layer3 = conv2d_maxpool(conv_layer2, conv_num_outputs3, conv_ksize, conv_strides, pool_ksize, pool_strides)
    conv_layer3 = conv2d_maxpool(conv_layer3, conv_num_outputs3, (4, 4), (1, 1), pool_ksize, pool_strides)
    conv_layer3 = conv2d_maxpool(conv_layer3, conv_num_outputs3, (4, 4), (1, 1), pool_ksize, pool_strides)
    conv_layer3 = conv2d_maxpool(conv_layer3, conv_num_outputs3, (5, 5), (1, 1), pool_ksize, pool_strides)
    conv_layer3 = conv2d_maxpool(conv_layer3, conv_num_outputs3, (5, 5), (1, 1), pool_ksize, pool_strides)
    conv_layer3 = conv2d_maxpool(conv_layer3, conv_num_outputs3, (5, 5), (1, 1), pool_ksize, pool_strides)
    conv_layer3 = tf.nn.dropout(conv_layer3, tf.to_float(keep_prob))

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    flattened = flatten(conv_layer3)

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    # num_outputs can be arbitrary in size
    num_outputs = 1024
    fully_conn_layer1 = fully_conn(flattened, 512)
    fully_conn_layer1 = tf.nn.dropout(fully_conn_layer1, tf.to_float(keep_prob))
    fully_conn_layer2 = fully_conn(fully_conn_layer1, 512)
    #fully_conn_layer3 = fully_conn(fully_conn_layer2, 128)
    #fully_conn_layer4 = fully_conn(fully_conn_layer3, 64)
    #fully_conn_layer3 = tf.nn.dropout(fully_conn_layer3, tf.to_float(keep_prob))

    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    out = output(fully_conn_layer2, 10)
    
    
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [65]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    return session.run(optimizer, feed_dict={x: feature_batch, y: label_batch, keep_prob: keep_probability})


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [66]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    loss = session.run(cost, feed_dict =
                       {x: feature_batch, y: label_batch, keep_prob: 1.0})
    valid_accuracy = session.run(accuracy,feed_dict =
                      {x: valid_features, y: valid_labels, keep_prob: 1.0})
    print('Loss {} - Validation Accuracy: {}'.format(
        loss,
        valid_accuracy))
    return float('{}'.format(valid_accuracy))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [70]:
# TODO: Tune Parameters
epochs = 40
batch_size = 128
keep_probability = 0.7

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [69]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())

    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        valid_acc = print_stats(sess, batch_features, batch_labels, cost, accuracy)
        print('Accuracy: {}'.format(valid_acc))


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss 1.4855406284332275 - Validation Accuracy: 0.4519999623298645
Accuracy: 0.4519999623298645

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [72]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())

    best_valid_accuracy = 0.0
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            valid_acc = print_stats(sess, batch_features, batch_labels, cost, accuracy)
            if (valid_acc > best_valid_accuracy):
                print('best validation accuracy ({} > {}); saving model'.format(valid_acc, best_valid_accuracy))
                # Save Model
                saver = tf.train.Saver()
                save_path = saver.save(sess, save_model_path) 
                best_valid_accuracy = valid_acc


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss 1.6319758892059326 - Validation Accuracy: 0.4225999712944031
best validation accuracy (0.4225999712944031 > 0.0); saving model
Epoch  1, CIFAR-10 Batch 2:  Loss 1.3355199098587036 - Validation Accuracy: 0.4811999201774597
best validation accuracy (0.4811999201774597 > 0.4225999712944031); saving model
Epoch  1, CIFAR-10 Batch 3:  Loss 0.8695474863052368 - Validation Accuracy: 0.5471999645233154
best validation accuracy (0.5471999645233154 > 0.4811999201774597); saving model
Epoch  1, CIFAR-10 Batch 4:  Loss 0.9201483726501465 - Validation Accuracy: 0.5821998715400696
best validation accuracy (0.5821998715400696 > 0.5471999645233154); saving model
Epoch  1, CIFAR-10 Batch 5:  Loss 1.0976526737213135 - Validation Accuracy: 0.6095998883247375
best validation accuracy (0.6095998883247375 > 0.5821998715400696); saving model
Epoch  2, CIFAR-10 Batch 1:  Loss 0.7871760129928589 - Validation Accuracy: 0.6253999471664429
best validation accuracy (0.6253999471664429 > 0.6095998883247375); saving model
Epoch  2, CIFAR-10 Batch 2:  Loss 0.8799318075180054 - Validation Accuracy: 0.6227998733520508
Epoch  2, CIFAR-10 Batch 3:  Loss 0.5085399150848389 - Validation Accuracy: 0.6537998914718628
best validation accuracy (0.6537998914718628 > 0.6253999471664429); saving model
Epoch  2, CIFAR-10 Batch 4:  Loss 0.6980593204498291 - Validation Accuracy: 0.6795998215675354
best validation accuracy (0.6795998215675354 > 0.6537998914718628); saving model
Epoch  2, CIFAR-10 Batch 5:  Loss 0.7156543731689453 - Validation Accuracy: 0.6839998960494995
best validation accuracy (0.6839998960494995 > 0.6795998215675354); saving model
Epoch  3, CIFAR-10 Batch 1:  Loss 0.6792083978652954 - Validation Accuracy: 0.6913998126983643
best validation accuracy (0.6913998126983643 > 0.6839998960494995); saving model
Epoch  3, CIFAR-10 Batch 2:  Loss 0.6409048438072205 - Validation Accuracy: 0.6937998533248901
best validation accuracy (0.6937998533248901 > 0.6913998126983643); saving model
Epoch  3, CIFAR-10 Batch 3:  Loss 0.39636480808258057 - Validation Accuracy: 0.7139998078346252
best validation accuracy (0.7139998078346252 > 0.6937998533248901); saving model
Epoch  3, CIFAR-10 Batch 4:  Loss 0.41110876202583313 - Validation Accuracy: 0.7349998354911804
best validation accuracy (0.7349998354911804 > 0.7139998078346252); saving model
Epoch  3, CIFAR-10 Batch 5:  Loss 0.4491598904132843 - Validation Accuracy: 0.7369998693466187
best validation accuracy (0.7369998693466187 > 0.7349998354911804); saving model
Epoch  4, CIFAR-10 Batch 1:  Loss 0.4880744218826294 - Validation Accuracy: 0.7107998728752136
Epoch  4, CIFAR-10 Batch 2:  Loss 0.41192203760147095 - Validation Accuracy: 0.7247998714447021
Epoch  4, CIFAR-10 Batch 3:  Loss 0.2331046313047409 - Validation Accuracy: 0.7443998456001282
best validation accuracy (0.7443998456001282 > 0.7369998693466187); saving model
Epoch  4, CIFAR-10 Batch 4:  Loss 0.3761759400367737 - Validation Accuracy: 0.7441998720169067
Epoch  4, CIFAR-10 Batch 5:  Loss 0.3212130069732666 - Validation Accuracy: 0.761999785900116
best validation accuracy (0.761999785900116 > 0.7443998456001282); saving model
Epoch  5, CIFAR-10 Batch 1:  Loss 0.38188427686691284 - Validation Accuracy: 0.7247998714447021
Epoch  5, CIFAR-10 Batch 2:  Loss 0.3263274133205414 - Validation Accuracy: 0.7567998766899109
Epoch  5, CIFAR-10 Batch 3:  Loss 0.1751546859741211 - Validation Accuracy: 0.7601998448371887
Epoch  5, CIFAR-10 Batch 4:  Loss 0.2823730409145355 - Validation Accuracy: 0.7661998271942139
best validation accuracy (0.7661998271942139 > 0.761999785900116); saving model
Epoch  5, CIFAR-10 Batch 5:  Loss 0.2578330934047699 - Validation Accuracy: 0.7631998062133789
Epoch  6, CIFAR-10 Batch 1:  Loss 0.24840877950191498 - Validation Accuracy: 0.7493998408317566
Epoch  6, CIFAR-10 Batch 2:  Loss 0.28134024143218994 - Validation Accuracy: 0.7643998265266418
Epoch  6, CIFAR-10 Batch 3:  Loss 0.13892380893230438 - Validation Accuracy: 0.7707998752593994
best validation accuracy (0.7707998752593994 > 0.7661998271942139); saving model
Epoch  6, CIFAR-10 Batch 4:  Loss 0.2691987454891205 - Validation Accuracy: 0.7711998224258423
best validation accuracy (0.7711998224258423 > 0.7707998752593994); saving model
Epoch  6, CIFAR-10 Batch 5:  Loss 0.24496516585350037 - Validation Accuracy: 0.7747998237609863
best validation accuracy (0.7747998237609863 > 0.7711998224258423); saving model
Epoch  7, CIFAR-10 Batch 1:  Loss 0.20862530171871185 - Validation Accuracy: 0.760199785232544
Epoch  7, CIFAR-10 Batch 2:  Loss 0.17338484525680542 - Validation Accuracy: 0.7743998169898987
Epoch  7, CIFAR-10 Batch 3:  Loss 0.09074291586875916 - Validation Accuracy: 0.7729998826980591
Epoch  7, CIFAR-10 Batch 4:  Loss 0.24752654135227203 - Validation Accuracy: 0.7683998346328735
Epoch  7, CIFAR-10 Batch 5:  Loss 0.14000658690929413 - Validation Accuracy: 0.776999831199646
best validation accuracy (0.776999831199646 > 0.7747998237609863); saving model
Epoch  8, CIFAR-10 Batch 1:  Loss 0.1218876913189888 - Validation Accuracy: 0.7633997797966003
Epoch  8, CIFAR-10 Batch 2:  Loss 0.1349104791879654 - Validation Accuracy: 0.7797998189926147
best validation accuracy (0.7797998189926147 > 0.776999831199646); saving model
Epoch  8, CIFAR-10 Batch 3:  Loss 0.06413623690605164 - Validation Accuracy: 0.7783997654914856
Epoch  8, CIFAR-10 Batch 4:  Loss 0.1533701866865158 - Validation Accuracy: 0.7745997905731201
Epoch  8, CIFAR-10 Batch 5:  Loss 0.06061895936727524 - Validation Accuracy: 0.7827997803688049
best validation accuracy (0.7827997803688049 > 0.7797998189926147); saving model
Epoch  9, CIFAR-10 Batch 1:  Loss 0.1037052720785141 - Validation Accuracy: 0.7653998732566833
Epoch  9, CIFAR-10 Batch 2:  Loss 0.10137450695037842 - Validation Accuracy: 0.7761998772621155
Epoch  9, CIFAR-10 Batch 3:  Loss 0.06534262001514435 - Validation Accuracy: 0.7759997844696045
Epoch  9, CIFAR-10 Batch 4:  Loss 0.1227513998746872 - Validation Accuracy: 0.7803997993469238
Epoch  9, CIFAR-10 Batch 5:  Loss 0.03993582725524902 - Validation Accuracy: 0.783399760723114
best validation accuracy (0.783399760723114 > 0.7827997803688049); saving model
Epoch 10, CIFAR-10 Batch 1:  Loss 0.071501225233078 - Validation Accuracy: 0.784599781036377
best validation accuracy (0.784599781036377 > 0.783399760723114); saving model
Epoch 10, CIFAR-10 Batch 2:  Loss 0.07137492299079895 - Validation Accuracy: 0.790199875831604
best validation accuracy (0.790199875831604 > 0.784599781036377); saving model
Epoch 10, CIFAR-10 Batch 3:  Loss 0.04707634449005127 - Validation Accuracy: 0.7869998216629028
Epoch 10, CIFAR-10 Batch 4:  Loss 0.1158001497387886 - Validation Accuracy: 0.7849997878074646
Epoch 10, CIFAR-10 Batch 5:  Loss 0.046405576169490814 - Validation Accuracy: 0.7863998413085938
Epoch 11, CIFAR-10 Batch 1:  Loss 0.05421687662601471 - Validation Accuracy: 0.779999852180481
Epoch 11, CIFAR-10 Batch 2:  Loss 0.0833139419555664 - Validation Accuracy: 0.7923998236656189
best validation accuracy (0.7923998236656189 > 0.790199875831604); saving model
Epoch 11, CIFAR-10 Batch 3:  Loss 0.02232317626476288 - Validation Accuracy: 0.7905998229980469
Epoch 11, CIFAR-10 Batch 4:  Loss 0.054713450372219086 - Validation Accuracy: 0.7923998236656189
Epoch 11, CIFAR-10 Batch 5:  Loss 0.03295283764600754 - Validation Accuracy: 0.7925998568534851
best validation accuracy (0.7925998568534851 > 0.7923998236656189); saving model
Epoch 12, CIFAR-10 Batch 1:  Loss 0.06060580536723137 - Validation Accuracy: 0.7829998135566711
Epoch 12, CIFAR-10 Batch 2:  Loss 0.05533980205655098 - Validation Accuracy: 0.7851998209953308
Epoch 12, CIFAR-10 Batch 3:  Loss 0.012736334465444088 - Validation Accuracy: 0.7933997511863708
best validation accuracy (0.7933997511863708 > 0.7925998568534851); saving model
Epoch 12, CIFAR-10 Batch 4:  Loss 0.07446523010730743 - Validation Accuracy: 0.7693998217582703
Epoch 12, CIFAR-10 Batch 5:  Loss 0.032038524746894836 - Validation Accuracy: 0.7877998352050781
Epoch 13, CIFAR-10 Batch 1:  Loss 0.031198235228657722 - Validation Accuracy: 0.7853997945785522
Epoch 13, CIFAR-10 Batch 2:  Loss 0.04874231666326523 - Validation Accuracy: 0.7985997796058655
best validation accuracy (0.7985997796058655 > 0.7933997511863708); saving model
Epoch 13, CIFAR-10 Batch 3:  Loss 0.022671902552247047 - Validation Accuracy: 0.7923998236656189
Epoch 13, CIFAR-10 Batch 4:  Loss 0.08665866404771805 - Validation Accuracy: 0.7885997891426086
Epoch 13, CIFAR-10 Batch 5:  Loss 0.014123830944299698 - Validation Accuracy: 0.7963998317718506
Epoch 14, CIFAR-10 Batch 1:  Loss 0.032094381749629974 - Validation Accuracy: 0.7933998107910156
Epoch 14, CIFAR-10 Batch 2:  Loss 0.0323563888669014 - Validation Accuracy: 0.7865998148918152
Epoch 14, CIFAR-10 Batch 3:  Loss 0.016236715018749237 - Validation Accuracy: 0.7969998717308044
Epoch 14, CIFAR-10 Batch 4:  Loss 0.024525724351406097 - Validation Accuracy: 0.7785998582839966
Epoch 14, CIFAR-10 Batch 5:  Loss 0.011239292100071907 - Validation Accuracy: 0.803199827671051
best validation accuracy (0.803199827671051 > 0.7985997796058655); saving model
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-72-33a971f96747> in <module>()
     16         for batch_i in range(1, n_batches + 1):
     17             for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
---> 18                 train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
     19             print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
     20             valid_acc = print_stats(sess, batch_features, batch_labels, cost, accuracy)

<ipython-input-65-91cc6bd544de> in train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch)
      8     : label_batch: Batch of Numpy label data
      9     """
---> 10     return session.run(optimizer, feed_dict={x: feature_batch, y: label_batch, keep_prob: keep_probability})
     11 
     12 

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
    765     try:
    766       result = self._run(None, fetches, feed_dict, options_ptr,
--> 767                          run_metadata_ptr)
    768       if run_metadata:
    769         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    963     if final_fetches or final_targets:
    964       results = self._do_run(handle, final_targets, final_fetches,
--> 965                              feed_dict_string, options, run_metadata)
    966     else:
    967       results = []

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1013     if handle is None:
   1014       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015                            target_list, options, run_metadata)
   1016     else:
   1017       return self._do_call(_prun_fn, self._session, handle, feed_dict,

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
   1020   def _do_call(self, fn, *args):
   1021     try:
-> 1022       return fn(*args)
   1023     except errors.OpError as e:
   1024       message = compat.as_text(e.message)

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1002         return tf_session.TF_Run(session, options,
   1003                                  feed_dict, fetch_list, target_list,
-> 1004                                  status, run_metadata)
   1005 
   1006     def _prun_fn(session, handle, feed_dict, fetch_list):

KeyboardInterrupt: 

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [73]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.7885680379746836

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.