In [1]:
%pylab inline
In [2]:
raw = np.array([ [18, 2.0], [29, 1.0], [33, 5.0], [46, 1.0] ])
In [19]:
plt.plot(raw[:,0], raw[:,1], 'o')
plt.axis([0, 60, 0, 6])
plt.xlabel('Time (s)')
plt.ylabel('X')
plt.savefig('raw_points.png')
In [20]:
plt.plot(raw[:,0], raw[:,1], 'o')
plt.vlines([20, 30, 40, 50], 0, 0.5, color='r', linestyles='solid')
plt.axis([0, 60, 0, 6])
plt.xlabel('Time (s)')
plt.ylabel('X')
plt.savefig('sample_times.png')
In [21]:
plt.plot(raw[:,0], raw[:,1], 'o')
plt.vlines([20, 30, 40, 50], 0, 0.5, color='r', linestyles='solid')
plt.vlines([15, 25, 35, 45, 55], 0, 6, color='g', linestyles='dashed')
plt.axis([0, 60, 0, 6])
plt.xlabel('Time (s)')
plt.ylabel('X')
plt.savefig('bins.png')
In [ ]: