In [ ]:
%load_ext autoreload
%autoreload 2
import torch
from models.multimodal import load_data
import torch.utils.data as data
import torchvision.transforms as transforms
torch.multiprocessing.set_sharing_strategy('file_system')
import pickle
In [ ]:
reader_malo = load_data.MultimodalReader(
'/disks/sdb1-3T/exportNFS/Databases/jobScreening_cvpr17/train/annotation_training.pkl',
'/disks/sdb1-3T/exportNFS/Databases/jobScreening_cvpr17/train/transcripts/ctms',
'/disks/sdb1-3T/exportNFS/Databases/jobScreening_cvpr17/train/audios/fbank',
# '/disks/sdb1-3T/exportNFS/csp/jobScreening_cvpr17/train/faces2/'
'/disks/sdb1-3T/exportNFS/Databases/jobScreening_cvpr17/train/faces/vgg_features'
)
In [ ]:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
reader = load_data.MultimodalReader(
'/disks/sdb1-3T/exportNFS/Databases/jobScreening_cvpr17/train/annotation_training.pkl',
'/disks/sdb1-3T/exportNFS/Databases/jobScreening_cvpr17/train/transcripts/ctms',
'/disks/sdb1-3T/exportNFS/Databases/jobScreening_cvpr17/train/audios/fbank',
# '/disks/sdb1-3T/exportNFS/csp/jobScreening_cvpr17/train/faces2/',
'/disks/sdb1-3T/exportNFS/Databases/jobScreening_cvpr17/train/faces/vgg_features',
transform=transforms.Compose([
transforms.Scale(240),
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
In [ ]:
train_loader_bad = data.DataLoader(
reader,
batch_size=1, shuffle=True, num_workers=1)
In [ ]:
def my_collate2(batch):
return batch
In [ ]:
print("Loading serialized_reader")
with open('serialized_reader.pickle','rb') as stream:
reader = pickle.load(stream)
print("Loaded serialized_reader")
In [ ]:
%reset_selective train_loader
train_loader = data.DataLoader(
reader,
batch_size=4,
shuffle=True,
num_workers=1,
pin_memory=False, collate_fn=my_collate2)
In [ ]:
for mydata in train_loader:
break
In [ ]:
print(len(mydata))
# with open('serialized_loaded_data.pickle','wb') as stream:
# pickle.dump(mydata,stream)
In [ ]:
video=mydata[0][0][2]
video[0][0].shape[0]
In [ ]:
my_collate = load_data.my_collate
what = my_collate(mydata)
In [ ]:
mydata[3][0].size()
In [ ]:
load_data.my_collate
In [ ]:
from models.multimodal import seq_model
In [ ]: