In [1]:
import cPickle
import numpy as np
import matplotlib.pyplot as plt
# PARAMS
log_dir = "/home/sforesti/avakas/scratch/sforestier001/logs/CogSci2017/2017-01-17_19-32-17-EXPLO-0.5"
filename = log_dir + '/results/progress.pickle'
with open(filename, 'r') as f:
data_progress = cPickle.load(f)
In [8]:
%matplotlib inline
import seaborn
n_trials = 500
n_iter = 80000
iter_ds = 100
trial_list = range(1,n_trials + 1)
config_name = "RMB"
x = [iter_ds*i for i in range(n_iter/iter_ds)]
for trial in [5]:
for mid in data_progress[config_name][trial]["chosen_modules"].keys():
print trial, mid, data_progress[config_name][trial]["cp_evolution"][mid][-1]
plt.plot(x, data_progress[config_name][trial]["cp_evolution"][mid], label=mid)
plt.ylim([0, 0.5])
plt.xlim([0, n_iter])
plt.legend(ncol=3)
Out[8]:
In [10]:
for trial in [6]:
for mid in data_progress[config_name][trial]["chosen_modules"].keys():
print trial, mid, data_progress[config_name][trial]["pp_evolution"][mid][-1]
plt.plot(x, data_progress[config_name][trial]["pp_evolution"][mid], label=mid)
plt.ylim([0, 0.5])
plt.xlim([0, n_iter])
plt.legend(ncol=3)
Out[10]: