[2016-04-15 12:06:06] INFO: H5DBLoader - Caching DB in memory
[2016-04-15 12:06:57] INFO: Pipeline - Starting computation
[2016-04-15 12:06:58] INFO: Graph - Setting up graph
[2016-04-15 12:06:58] INFO: Node - data has shape (-1, 3, 240, 320)
[2016-04-15 12:06:58] INFO: Node - label has shape (-1, 1, 240, 320)
[2016-04-15 12:06:58] INFO: Node - conv_1 has shape (-1, 64, 240, 320)
[2016-04-15 12:06:58] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:06:58] INFO: Node - conv_2 has shape (-1, 64, 240, 320)
[2016-04-15 12:06:58] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:06:58] INFO: Node - pool_2 has shape (-1, 64, 120, 160)
[2016-04-15 12:06:58] INFO: Pool - Using DNN CUDA Module
[2016-04-15 12:06:58] INFO: Node - conv_3 has shape (-1, 128, 120, 160)
[2016-04-15 12:06:58] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:06:58] INFO: Node - conv_4 has shape (-1, 128, 120, 160)
[2016-04-15 12:06:58] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:06:58] INFO: Node - pool_4 has shape (-1, 128, 60, 80)
[2016-04-15 12:06:58] INFO: Pool - Using DNN CUDA Module
[2016-04-15 12:06:58] INFO: Node - conv_5 has shape (-1, 256, 60, 80)
[2016-04-15 12:06:58] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:06:58] INFO: Node - conv_6 has shape (-1, 256, 60, 80)
[2016-04-15 12:06:58] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:06:58] INFO: Node - pool_6 has shape (-1, 256, 30, 40)
[2016-04-15 12:06:58] INFO: Pool - Using DNN CUDA Module
[2016-04-15 12:08:09] INFO: Node - conv_7 has shape (-1, 512, 30, 40)
[2016-04-15 12:08:09] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:09] INFO: Node - conv_8 has shape (-1, 512, 30, 40)
[2016-04-15 12:08:09] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:09] INFO: Node - pool_8 has shape (-1, 512, 15, 20)
[2016-04-15 12:08:09] INFO: Pool - Using DNN CUDA Module
[2016-04-15 12:08:09] INFO: Node - fl has shape (-1, 153600)
[2016-04-15 12:08:42] INFO: Node - fc_8 has shape (-1, 4096)
[2016-04-15 12:08:42] INFO: Node - dp_8 has shape (-1, 4096)
[2016-04-15 12:08:46] INFO: Node - fc_9 has shape (-1, 19200)
[2016-04-15 12:08:46] INFO: Node - dp_9 has shape (-1, 19200)
[2016-04-15 12:08:46] INFO: Node - rs_10 has shape (-1, 64, 15, 20)
[2016-04-15 12:08:46] INFO: Node - up_11 has shape (-1, 64, 30, 40)
[2016-04-15 12:08:46] INFO: Node - conv_11 has shape (-1, 512, 30, 40)
[2016-04-15 12:08:46] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:46] INFO: Node - concat_11 has shape (-1, 1024, 30, 40)
[2016-04-15 12:08:46] INFO: Node - conv_12 has shape (-1, 512, 30, 40)
[2016-04-15 12:08:46] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - conv_13 has shape (-1, 512, 30, 40)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - up_14 has shape (-1, 512, 60, 80)
[2016-04-15 12:08:47] INFO: Node - conv_14 has shape (-1, 256, 60, 80)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - concat_14 has shape (-1, 512, 60, 80)
[2016-04-15 12:08:47] INFO: Node - conv_15 has shape (-1, 256, 60, 80)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - conv_16 has shape (-1, 256, 60, 80)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - up_17 has shape (-1, 256, 120, 160)
[2016-04-15 12:08:47] INFO: Node - conv_17 has shape (-1, 128, 120, 160)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - concat_17 has shape (-1, 256, 120, 160)
[2016-04-15 12:08:47] INFO: Node - conv_18 has shape (-1, 128, 120, 160)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - conv_19 has shape (-1, 128, 120, 160)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - up_20 has shape (-1, 128, 240, 320)
[2016-04-15 12:08:47] INFO: Node - conv_20 has shape (-1, 64, 240, 320)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - concat_20 has shape (-1, 128, 240, 320)
[2016-04-15 12:08:47] INFO: Node - conv_21 has shape (-1, 64, 240, 320)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - conv_22 has shape (-1, 64, 240, 320)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - conv_23 has shape (-1, 1, 240, 320)
[2016-04-15 12:08:47] INFO: Conv2D - Using DNN CUDA Module
[2016-04-15 12:08:47] INFO: Node - loss has shape (1,)
[2016-04-15 12:08:47] INFO: Node - mse has shape (1,)
[2016-04-15 12:09:06] INFO: Graph - Invoking Theano compiler
[2016-04-15 12:09:44] INFO: Optimizer - Compilation finished
[2016-04-15 12:10:34] INFO: Optimizer - Training score at iteration 50: {'loss': array(3.6898860931396484, dtype=float32), 'mse': array(1.9209076166152954, dtype=float32)}
[2016-04-15 12:11:26] INFO: Optimizer - Training score at iteration 100: {'loss': array(6.039698600769043, dtype=float32), 'mse': array(2.4575798511505127, dtype=float32)}
[2016-04-15 12:12:18] INFO: Optimizer - Training score at iteration 150: {'loss': array(4.121854305267334, dtype=float32), 'mse': array(2.0302350521087646, dtype=float32)}
[2016-04-15 12:13:10] INFO: Optimizer - Training score at iteration 200: {'loss': array(1.2761114835739136, dtype=float32), 'mse': array(1.1296510696411133, dtype=float32)}
[2016-04-15 12:13:31] INFO: Optimizer - Mean loss values for validation at iteration 200 is: {'loss': 3.9892375, 'mse': 1.9299775}
[2016-04-15 12:14:22] INFO: Optimizer - Training score at iteration 250: {'loss': array(1.8368662595748901, dtype=float32), 'mse': array(1.3553104400634766, dtype=float32)}
[2016-04-15 12:15:13] INFO: Optimizer - Training score at iteration 300: {'loss': array(3.3300416469573975, dtype=float32), 'mse': array(1.8248401880264282, dtype=float32)}
[2016-04-15 12:16:04] INFO: Optimizer - Training score at iteration 350: {'loss': array(2.932969093322754, dtype=float32), 'mse': array(1.712591290473938, dtype=float32)}
[2016-04-15 12:16:56] INFO: Optimizer - Training score at iteration 400: {'loss': array(5.348709583282471, dtype=float32), 'mse': array(2.312727689743042, dtype=float32)}
[2016-04-15 12:17:17] INFO: Optimizer - Mean loss values for validation at iteration 400 is: {'loss': 3.4877591, 'mse': 1.8196418}
[2016-04-15 12:18:08] INFO: Optimizer - Training score at iteration 450: {'loss': array(6.388795375823975, dtype=float32), 'mse': array(2.52760648727417, dtype=float32)}
[2016-04-15 12:18:59] INFO: Optimizer - Training score at iteration 500: {'loss': array(1.601336121559143, dtype=float32), 'mse': array(1.2654390335083008, dtype=float32)}
[2016-04-15 12:19:50] INFO: Optimizer - Training score at iteration 550: {'loss': array(2.7529220581054688, dtype=float32), 'mse': array(1.6591931581497192, dtype=float32)}
[2016-04-15 12:20:41] INFO: Optimizer - Training score at iteration 600: {'loss': array(3.1141138076782227, dtype=float32), 'mse': array(1.7646851539611816, dtype=float32)}
[2016-04-15 12:21:03] INFO: Optimizer - Mean loss values for validation at iteration 600 is: {'loss': 3.2145681, 'mse': 1.7353328}
[2016-04-15 12:21:54] INFO: Optimizer - Training score at iteration 650: {'loss': array(1.4677759408950806, dtype=float32), 'mse': array(1.2115180492401123, dtype=float32)}
[2016-04-15 12:22:45] INFO: Optimizer - Training score at iteration 700: {'loss': array(2.00187611579895, dtype=float32), 'mse': array(1.4148766994476318, dtype=float32)}
[2016-04-15 12:23:37] INFO: Optimizer - Training score at iteration 750: {'loss': array(3.4963295459747314, dtype=float32), 'mse': array(1.8698474168777466, dtype=float32)}
[2016-04-15 12:24:28] INFO: Optimizer - Training score at iteration 800: {'loss': array(2.919304609298706, dtype=float32), 'mse': array(1.708597183227539, dtype=float32)}
[2016-04-15 12:24:50] INFO: Optimizer - Mean loss values for validation at iteration 800 is: {'loss': 3.1505487, 'mse': 1.7089934}
[2016-04-15 12:25:41] INFO: Optimizer - Training score at iteration 850: {'loss': array(6.182797908782959, dtype=float32), 'mse': array(2.486523151397705, dtype=float32)}
[2016-04-15 12:26:32] INFO: Optimizer - Training score at iteration 900: {'loss': array(2.407020330429077, dtype=float32), 'mse': array(1.551457405090332, dtype=float32)}
[2016-04-15 12:27:24] INFO: Optimizer - Training score at iteration 950: {'loss': array(0.6334241032600403, dtype=float32), 'mse': array(0.7958794236183167, dtype=float32)}
[2016-04-15 12:28:36] INFO: Optimizer - Mean loss values for validation at iteration 999 is: {'loss': 3.0468802, 'mse': 1.6804588}
[2016-04-15 12:28:36] INFO: Optimizer - Training score at iteration 1000: {'loss': array(0.9695623517036438, dtype=float32), 'mse': array(0.9846635460853577, dtype=float32)}
[2016-04-15 12:29:28] INFO: Optimizer - Training score at iteration 1050: {'loss': array(2.4216063022613525, dtype=float32), 'mse': array(1.5561511516571045, dtype=float32)}
[2016-04-15 12:30:19] INFO: Optimizer - Training score at iteration 1100: {'loss': array(1.0969470739364624, dtype=float32), 'mse': array(1.0473524332046509, dtype=float32)}
[2016-04-15 12:31:10] INFO: Optimizer - Training score at iteration 1150: {'loss': array(3.954561233520508, dtype=float32), 'mse': array(1.9886078834533691, dtype=float32)}
[2016-04-15 12:32:22] INFO: Optimizer - Mean loss values for validation at iteration 1199 is: {'loss': 2.9987833, 'mse': 1.6660901}
[2016-04-15 12:32:23] INFO: Optimizer - Training score at iteration 1200: {'loss': array(1.3546457290649414, dtype=float32), 'mse': array(1.1638925075531006, dtype=float32)}
[2016-04-15 12:33:14] INFO: Optimizer - Training score at iteration 1250: {'loss': array(1.1276434659957886, dtype=float32), 'mse': array(1.0619055032730103, dtype=float32)}
[2016-04-15 12:34:06] INFO: Optimizer - Training score at iteration 1300: {'loss': array(1.1437352895736694, dtype=float32), 'mse': array(1.069455623626709, dtype=float32)}
[2016-04-15 12:34:57] INFO: Optimizer - Training score at iteration 1350: {'loss': array(0.9916593432426453, dtype=float32), 'mse': array(0.995820939540863, dtype=float32)}
[2016-04-15 12:36:09] INFO: Optimizer - Mean loss values for validation at iteration 1399 is: {'loss': 2.9808652, 'mse': 1.6721261}
[2016-04-15 12:36:10] INFO: Optimizer - Training score at iteration 1400: {'loss': array(5.2344818115234375, dtype=float32), 'mse': array(2.2878990173339844, dtype=float32)}
[2016-04-15 12:37:01] INFO: Optimizer - Training score at iteration 1450: {'loss': array(4.200952529907227, dtype=float32), 'mse': array(2.0496225357055664, dtype=float32)}
[2016-04-15 12:37:53] INFO: Optimizer - Training score at iteration 1500: {'loss': array(1.632554054260254, dtype=float32), 'mse': array(1.2777143716812134, dtype=float32)}
[2016-04-15 12:38:44] INFO: Optimizer - Training score at iteration 1550: {'loss': array(1.9021379947662354, dtype=float32), 'mse': array(1.3791801929473877, dtype=float32)}
[2016-04-15 12:39:56] INFO: Optimizer - Mean loss values for validation at iteration 1599 is: {'loss': 3.0878115, 'mse': 1.7135918}
[2016-04-15 12:39:57] INFO: Optimizer - Training score at iteration 1600: {'loss': array(1.6363474130630493, dtype=float32), 'mse': array(1.2791979312896729, dtype=float32)}
[2016-04-15 12:40:48] INFO: Optimizer - Training score at iteration 1650: {'loss': array(5.3735575675964355, dtype=float32), 'mse': array(2.3180935382843018, dtype=float32)}
[2016-04-15 12:41:40] INFO: Optimizer - Training score at iteration 1700: {'loss': array(3.662386417388916, dtype=float32), 'mse': array(1.9137362241744995, dtype=float32)}
[2016-04-15 12:42:31] INFO: Optimizer - Training score at iteration 1750: {'loss': array(0.9008821845054626, dtype=float32), 'mse': array(0.9491481184959412, dtype=float32)}
[2016-04-15 12:43:42] INFO: Optimizer - Mean loss values for validation at iteration 1798 is: {'loss': 2.9346809, 'mse': 1.6455784}
[2016-04-15 12:43:44] INFO: Optimizer - Training score at iteration 1800: {'loss': array(0.7771921753883362, dtype=float32), 'mse': array(0.8815850019454956, dtype=float32)}
[2016-04-15 12:44:35] INFO: Optimizer - Training score at iteration 1850: {'loss': array(3.7727890014648438, dtype=float32), 'mse': array(1.9423668384552002, dtype=float32)}
[2016-04-15 12:45:27] INFO: Optimizer - Training score at iteration 1900: {'loss': array(1.1306822299957275, dtype=float32), 'mse': array(1.0633354187011719, dtype=float32)}
[2016-04-15 12:46:18] INFO: Optimizer - Training score at iteration 1950: {'loss': array(4.445053577423096, dtype=float32), 'mse': array(2.1083295345306396, dtype=float32)}
[2016-04-15 12:47:29] INFO: Optimizer - Mean loss values for validation at iteration 1998 is: {'loss': 2.8823514, 'mse': 1.6310947}
[2016-04-15 12:47:31] INFO: Optimizer - Training score at iteration 2000: {'loss': array(1.00186288356781, dtype=float32), 'mse': array(1.0009310245513916, dtype=float32)}
[2016-04-15 12:48:22] INFO: Optimizer - Training score at iteration 2050: {'loss': array(3.3791234493255615, dtype=float32), 'mse': array(1.8382391929626465, dtype=float32)}
[2016-04-15 12:49:14] INFO: Optimizer - Training score at iteration 2100: {'loss': array(0.8788202404975891, dtype=float32), 'mse': array(0.937454104423523, dtype=float32)}
[2016-04-15 12:50:05] INFO: Optimizer - Training score at iteration 2150: {'loss': array(5.990590572357178, dtype=float32), 'mse': array(2.44756817817688, dtype=float32)}
[2016-04-15 12:51:16] INFO: Optimizer - Mean loss values for validation at iteration 2198 is: {'loss': 2.8677907, 'mse': 1.6253463}
[2016-04-15 12:51:18] INFO: Optimizer - Training score at iteration 2200: {'loss': array(4.118265151977539, dtype=float32), 'mse': array(2.029350996017456, dtype=float32)}
[2016-04-15 12:52:09] INFO: Optimizer - Training score at iteration 2250: {'loss': array(4.3525214195251465, dtype=float32), 'mse': array(2.0862696170806885, dtype=float32)}
[2016-04-15 12:53:01] INFO: Optimizer - Training score at iteration 2300: {'loss': array(5.397786617279053, dtype=float32), 'mse': array(2.3233137130737305, dtype=float32)}
[2016-04-15 12:53:52] INFO: Optimizer - Training score at iteration 2350: {'loss': array(0.8001124262809753, dtype=float32), 'mse': array(0.8944900035858154, dtype=float32)}
[2016-04-15 12:55:03] INFO: Optimizer - Mean loss values for validation at iteration 2398 is: {'loss': 2.8701539, 'mse': 1.6406822}
[2016-04-15 12:55:05] INFO: Optimizer - Training score at iteration 2400: {'loss': array(2.208056926727295, dtype=float32), 'mse': array(1.4859532117843628, dtype=float32)}
[2016-04-15 12:55:57] INFO: Optimizer - Training score at iteration 2450: {'loss': array(2.1976077556610107, dtype=float32), 'mse': array(1.4824330806732178, dtype=float32)}
[2016-04-15 12:56:48] INFO: Optimizer - Training score at iteration 2500: {'loss': array(0.7919110655784607, dtype=float32), 'mse': array(0.8898938298225403, dtype=float32)}
[2016-04-15 12:57:40] INFO: Optimizer - Training score at iteration 2550: {'loss': array(1.6744413375854492, dtype=float32), 'mse': array(1.2940020561218262, dtype=float32)}
[2016-04-15 12:58:50] INFO: Optimizer - Mean loss values for validation at iteration 2597 is: {'loss': 2.8931336, 'mse': 1.6250683}
[2016-04-15 12:58:53] INFO: Optimizer - Training score at iteration 2600: {'loss': array(1.6555432081222534, dtype=float32), 'mse': array(1.2866791486740112, dtype=float32)}
[2016-04-15 12:59:44] INFO: Optimizer - Training score at iteration 2650: {'loss': array(3.1531875133514404, dtype=float32), 'mse': array(1.7757216691970825, dtype=float32)}
[2016-04-15 13:00:36] INFO: Optimizer - Training score at iteration 2700: {'loss': array(2.457340955734253, dtype=float32), 'mse': array(1.5675908327102661, dtype=float32)}
[2016-04-15 13:01:27] INFO: Optimizer - Training score at iteration 2750: {'loss': array(2.7218410968780518, dtype=float32), 'mse': array(1.6498003005981445, dtype=float32)}
[2016-04-15 13:02:37] INFO: Optimizer - Mean loss values for validation at iteration 2797 is: {'loss': 2.8316016, 'mse': 1.6126974}
[2016-04-15 13:02:40] INFO: Optimizer - Training score at iteration 2800: {'loss': array(3.6440606117248535, dtype=float32), 'mse': array(1.9089422225952148, dtype=float32)}
[2016-04-15 13:03:31] INFO: Optimizer - Training score at iteration 2850: {'loss': array(1.7267907857894897, dtype=float32), 'mse': array(1.3140740394592285, dtype=float32)}
[2016-04-15 13:04:22] INFO: Optimizer - Training score at iteration 2900: {'loss': array(4.331826686859131, dtype=float32), 'mse': array(2.0813040733337402, dtype=float32)}
[2016-04-15 13:05:14] INFO: Optimizer - Training score at iteration 2950: {'loss': array(1.3107174634933472, dtype=float32), 'mse': array(1.1448657512664795, dtype=float32)}
[2016-04-15 13:06:24] INFO: Optimizer - Mean loss values for validation at iteration 2997 is: {'loss': 2.796242, 'mse': 1.6110734}
[2016-04-15 13:06:27] INFO: Optimizer - Training score at iteration 3000: {'loss': array(1.2418111562728882, dtype=float32), 'mse': array(1.114365816116333, dtype=float32)}
[2016-04-15 13:06:27] INFO: Optimizer - Saving intermediate model state
[2016-04-15 13:08:44] INFO: Graph - Model file saved as: ../data/vnet2_iter_3000.zip
[2016-04-15 13:09:43] INFO: Optimizer - Training score at iteration 3050: {'loss': array(1.6866401433944702, dtype=float32), 'mse': array(1.298707127571106, dtype=float32)}
[2016-04-15 13:10:36] INFO: Optimizer - Training score at iteration 3100: {'loss': array(5.160858631134033, dtype=float32), 'mse': array(2.27175235748291, dtype=float32)}
[2016-04-15 13:11:29] INFO: Optimizer - Training score at iteration 3150: {'loss': array(3.984471082687378, dtype=float32), 'mse': array(1.9961140155792236, dtype=float32)}
[2016-04-15 13:12:41] INFO: Optimizer - Mean loss values for validation at iteration 3197 is: {'loss': 2.7955372, 'mse': 1.6031873}
[2016-04-15 13:12:43] INFO: Optimizer - Training score at iteration 3200: {'loss': array(1.746590495109558, dtype=float32), 'mse': array(1.3215863704681396, dtype=float32)}
[2016-04-15 13:13:35] INFO: Optimizer - Training score at iteration 3250: {'loss': array(3.478565216064453, dtype=float32), 'mse': array(1.8650912046432495, dtype=float32)}
[2016-04-15 13:14:27] INFO: Optimizer - Training score at iteration 3300: {'loss': array(1.7409676313400269, dtype=float32), 'mse': array(1.3194572925567627, dtype=float32)}
[2016-04-15 13:15:19] INFO: Optimizer - Training score at iteration 3350: {'loss': array(1.0467818975448608, dtype=float32), 'mse': array(1.0231236219406128, dtype=float32)}
[2016-04-15 13:16:28] INFO: Optimizer - Mean loss values for validation at iteration 3396 is: {'loss': 2.7949743, 'mse': 1.6020783}
[2016-04-15 13:16:32] INFO: Optimizer - Training score at iteration 3400: {'loss': array(2.875065565109253, dtype=float32), 'mse': array(1.6956018209457397, dtype=float32)}
[2016-04-15 13:17:24] INFO: Optimizer - Training score at iteration 3450: {'loss': array(5.846728324890137, dtype=float32), 'mse': array(2.4180009365081787, dtype=float32)}
[2016-04-15 13:18:15] INFO: Optimizer - Training score at iteration 3500: {'loss': array(2.1856343746185303, dtype=float32), 'mse': array(1.4783891439437866, dtype=float32)}
[2016-04-15 13:19:06] INFO: Optimizer - Training score at iteration 3550: {'loss': array(1.048744559288025, dtype=float32), 'mse': array(1.0240823030471802, dtype=float32)}
[2016-04-15 13:20:15] INFO: Optimizer - Mean loss values for validation at iteration 3596 is: {'loss': 2.7825544, 'mse': 1.6129748}
[2016-04-15 13:20:19] INFO: Optimizer - Training score at iteration 3600: {'loss': array(2.461890459060669, dtype=float32), 'mse': array(1.5690412521362305, dtype=float32)}
[2016-04-15 13:21:10] INFO: Optimizer - Training score at iteration 3650: {'loss': array(2.9446334838867188, dtype=float32), 'mse': array(1.7159934043884277, dtype=float32)}
[2016-04-15 13:22:02] INFO: Optimizer - Training score at iteration 3700: {'loss': array(1.667388916015625, dtype=float32), 'mse': array(1.2912741899490356, dtype=float32)}
[2016-04-15 13:22:54] INFO: Optimizer - Training score at iteration 3750: {'loss': array(2.0587375164031982, dtype=float32), 'mse': array(1.4348301887512207, dtype=float32)}
[2016-04-15 13:24:03] INFO: Optimizer - Mean loss values for validation at iteration 3796 is: {'loss': 2.7541695, 'mse': 1.6021954}
[2016-04-15 13:24:06] INFO: Optimizer - Training score at iteration 3800: {'loss': array(0.6491919755935669, dtype=float32), 'mse': array(0.8057245016098022, dtype=float32)}
[2016-04-15 13:24:58] INFO: Optimizer - Training score at iteration 3850: {'loss': array(2.189539909362793, dtype=float32), 'mse': array(1.4797093868255615, dtype=float32)}
[2016-04-15 13:25:49] INFO: Optimizer - Training score at iteration 3900: {'loss': array(4.219930171966553, dtype=float32), 'mse': array(2.0542469024658203, dtype=float32)}
[2016-04-15 13:26:41] INFO: Optimizer - Training score at iteration 3950: {'loss': array(1.0025628805160522, dtype=float32), 'mse': array(1.0012805461883545, dtype=float32)}
[2016-04-15 13:27:50] INFO: Optimizer - Mean loss values for validation at iteration 3996 is: {'loss': 2.7558253, 'mse': 1.6055255}
[2016-04-15 13:27:54] INFO: Optimizer - Training score at iteration 4000: {'loss': array(4.58544397354126, dtype=float32), 'mse': array(2.1413650512695312, dtype=float32)}
[2016-04-15 13:28:45] INFO: Optimizer - Training score at iteration 4050: {'loss': array(1.764044165611267, dtype=float32), 'mse': array(1.328173279762268, dtype=float32)}
[2016-04-15 13:29:36] INFO: Optimizer - Training score at iteration 4100: {'loss': array(0.8692458271980286, dtype=float32), 'mse': array(0.9323335289955139, dtype=float32)}
[2016-04-15 13:30:28] INFO: Optimizer - Training score at iteration 4150: {'loss': array(1.6209144592285156, dtype=float32), 'mse': array(1.2731513977050781, dtype=float32)}
[2016-04-15 13:31:36] INFO: Optimizer - Mean loss values for validation at iteration 4195 is: {'loss': 2.7220306, 'mse': 1.5880781}
[2016-04-15 13:31:41] INFO: Optimizer - Training score at iteration 4200: {'loss': array(1.2763537168502808, dtype=float32), 'mse': array(1.1297582387924194, dtype=float32)}
[2016-04-15 13:32:32] INFO: Optimizer - Training score at iteration 4250: {'loss': array(4.529118061065674, dtype=float32), 'mse': array(2.1281723976135254, dtype=float32)}
[2016-04-15 13:33:24] INFO: Optimizer - Training score at iteration 4300: {'loss': array(0.9983643889427185, dtype=float32), 'mse': array(0.999181866645813, dtype=float32)}
[2016-04-15 13:34:15] INFO: Optimizer - Training score at iteration 4350: {'loss': array(2.4426980018615723, dtype=float32), 'mse': array(1.5629132986068726, dtype=float32)}
[2016-04-15 13:35:23] INFO: Optimizer - Mean loss values for validation at iteration 4395 is: {'loss': 2.7170451, 'mse': 1.5902046}
[2016-04-15 13:35:28] INFO: Optimizer - Training score at iteration 4400: {'loss': array(7.313144683837891, dtype=float32), 'mse': array(2.704282522201538, dtype=float32)}
[2016-04-15 13:36:19] INFO: Optimizer - Training score at iteration 4450: {'loss': array(5.544116020202637, dtype=float32), 'mse': array(2.3545947074890137, dtype=float32)}
[2016-04-15 13:37:11] INFO: Optimizer - Training score at iteration 4500: {'loss': array(3.2680790424346924, dtype=float32), 'mse': array(1.8077828884124756, dtype=float32)}
[2016-04-15 13:38:02] INFO: Optimizer - Training score at iteration 4550: {'loss': array(2.557941198348999, dtype=float32), 'mse': array(1.5993565320968628, dtype=float32)}
[2016-04-15 13:39:10] INFO: Optimizer - Mean loss values for validation at iteration 4595 is: {'loss': 3.0098283, 'mse': 1.6986328}
[2016-04-15 13:39:15] INFO: Optimizer - Training score at iteration 4600: {'loss': array(3.304504156112671, dtype=float32), 'mse': array(1.8178294897079468, dtype=float32)}
[2016-04-15 13:40:07] INFO: Optimizer - Training score at iteration 4650: {'loss': array(2.374776601791382, dtype=float32), 'mse': array(1.541031002998352, dtype=float32)}
[2016-04-15 13:40:58] INFO: Optimizer - Training score at iteration 4700: {'loss': array(1.2189159393310547, dtype=float32), 'mse': array(1.1040452718734741, dtype=float32)}
[2016-04-15 13:41:50] INFO: Optimizer - Training score at iteration 4750: {'loss': array(2.023629903793335, dtype=float32), 'mse': array(1.4225435256958008, dtype=float32)}
[2016-04-15 13:42:57] INFO: Optimizer - Mean loss values for validation at iteration 4795 is: {'loss': 2.7334402, 'mse': 1.6023519}
[2016-04-15 13:43:02] INFO: Optimizer - Training score at iteration 4800: {'loss': array(1.8386577367782593, dtype=float32), 'mse': array(1.355971097946167, dtype=float32)}
[2016-04-15 13:43:54] INFO: Optimizer - Training score at iteration 4850: {'loss': array(1.8738847970962524, dtype=float32), 'mse': array(1.3688991069793701, dtype=float32)}
[2016-04-15 13:44:45] INFO: Optimizer - Training score at iteration 4900: {'loss': array(0.9289280772209167, dtype=float32), 'mse': array(0.9638091325759888, dtype=float32)}
[2016-04-15 13:45:37] INFO: Optimizer - Training score at iteration 4950: {'loss': array(1.5488895177841187, dtype=float32), 'mse': array(1.2445439100265503, dtype=float32)}
[2016-04-15 13:46:44] INFO: Optimizer - Mean loss values for validation at iteration 4995 is: {'loss': 2.6995893, 'mse': 1.5741982}
[2016-04-15 13:46:49] INFO: Optimizer - Training score at iteration 5000: {'loss': array(3.9133529663085938, dtype=float32), 'mse': array(1.9782196283340454, dtype=float32)}
[2016-04-15 13:47:41] INFO: Optimizer - Training score at iteration 5050: {'loss': array(1.178904414176941, dtype=float32), 'mse': array(1.0857735872268677, dtype=float32)}
[2016-04-15 13:48:32] INFO: Optimizer - Training score at iteration 5100: {'loss': array(1.0133557319641113, dtype=float32), 'mse': array(1.0066556930541992, dtype=float32)}
[2016-04-15 13:49:24] INFO: Optimizer - Training score at iteration 5150: {'loss': array(2.6047146320343018, dtype=float32), 'mse': array(1.61391282081604, dtype=float32)}
[2016-04-15 13:50:30] INFO: Optimizer - Mean loss values for validation at iteration 5194 is: {'loss': 2.6568432, 'mse': 1.5697215}
[2016-04-15 13:50:36] INFO: Optimizer - Training score at iteration 5200: {'loss': array(2.5717933177948, dtype=float32), 'mse': array(1.603681206703186, dtype=float32)}
[2016-04-15 13:51:28] INFO: Optimizer - Training score at iteration 5250: {'loss': array(0.7891891002655029, dtype=float32), 'mse': array(0.8883631229400635, dtype=float32)}
[2016-04-15 13:52:19] INFO: Optimizer - Training score at iteration 5300: {'loss': array(5.454504013061523, dtype=float32), 'mse': array(2.3354878425598145, dtype=float32)}
[2016-04-15 13:53:11] INFO: Optimizer - Training score at iteration 5350: {'loss': array(2.292912006378174, dtype=float32), 'mse': array(1.5142364501953125, dtype=float32)}
[2016-04-15 13:54:18] INFO: Optimizer - Mean loss values for validation at iteration 5394 is: {'loss': 2.6389468, 'mse': 1.5614171}
[2016-04-15 13:54:23] INFO: Optimizer - Training score at iteration 5400: {'loss': array(1.7653192281723022, dtype=float32), 'mse': array(1.32865309715271, dtype=float32)}
[2016-04-15 13:55:15] INFO: Optimizer - Training score at iteration 5450: {'loss': array(1.98757803440094, dtype=float32), 'mse': array(1.4098148345947266, dtype=float32)}
[2016-04-15 13:56:06] INFO: Optimizer - Training score at iteration 5500: {'loss': array(4.998775482177734, dtype=float32), 'mse': array(2.2357943058013916, dtype=float32)}
[2016-04-15 13:56:58] INFO: Optimizer - Training score at iteration 5550: {'loss': array(2.54329252243042, dtype=float32), 'mse': array(1.5947703123092651, dtype=float32)}
[2016-04-15 13:58:05] INFO: Optimizer - Mean loss values for validation at iteration 5594 is: {'loss': 2.6411781, 'mse': 1.5715328}
[2016-04-15 13:58:11] INFO: Optimizer - Training score at iteration 5600: {'loss': array(3.3825206756591797, dtype=float32), 'mse': array(1.839163064956665, dtype=float32)}
[2016-04-15 13:59:02] INFO: Optimizer - Training score at iteration 5650: {'loss': array(2.185026168823242, dtype=float32), 'mse': array(1.478183388710022, dtype=float32)}
[2016-04-15 13:59:54] INFO: Optimizer - Training score at iteration 5700: {'loss': array(1.9164535999298096, dtype=float32), 'mse': array(1.3843603134155273, dtype=float32)}
[2016-04-15 14:00:45] INFO: Optimizer - Training score at iteration 5750: {'loss': array(1.4647948741912842, dtype=float32), 'mse': array(1.210287094116211, dtype=float32)}
[2016-04-15 14:01:52] INFO: Optimizer - Mean loss values for validation at iteration 5794 is: {'loss': 2.6571846, 'mse': 1.5814924}
[2016-04-15 14:01:58] INFO: Optimizer - Training score at iteration 5800: {'loss': array(1.757467269897461, dtype=float32), 'mse': array(1.3256950378417969, dtype=float32)}
[2016-04-15 14:02:49] INFO: Optimizer - Training score at iteration 5850: {'loss': array(1.1162073612213135, dtype=float32), 'mse': array(1.0565071105957031, dtype=float32)}
[2016-04-15 14:03:41] INFO: Optimizer - Training score at iteration 5900: {'loss': array(1.0208338499069214, dtype=float32), 'mse': array(1.010363221168518, dtype=float32)}
[2016-04-15 14:04:33] INFO: Optimizer - Training score at iteration 5950: {'loss': array(2.052830219268799, dtype=float32), 'mse': array(1.4327701330184937, dtype=float32)}
[2016-04-15 14:05:38] INFO: Optimizer - Mean loss values for validation at iteration 5993 is: {'loss': 2.6837602, 'mse': 1.5651491}
[2016-04-15 14:05:45] INFO: Optimizer - Training score at iteration 6000: {'loss': array(2.9813320636749268, dtype=float32), 'mse': array(1.7266534566879272, dtype=float32)}
[2016-04-15 14:05:45] INFO: Optimizer - Saving intermediate model state
[2016-04-15 14:08:15] INFO: Graph - Model file saved as: ../data/vnet2_iter_6000.zip
[2016-04-15 14:09:06] INFO: Optimizer - Training score at iteration 6050: {'loss': array(3.8653500080108643, dtype=float32), 'mse': array(1.966049313545227, dtype=float32)}
[2016-04-15 14:09:58] INFO: Optimizer - Training score at iteration 6100: {'loss': array(2.1321327686309814, dtype=float32), 'mse': array(1.4601824283599854, dtype=float32)}
[2016-04-15 14:10:51] INFO: Optimizer - Training score at iteration 6150: {'loss': array(0.9187813997268677, dtype=float32), 'mse': array(0.958530843257904, dtype=float32)}
[2016-04-15 14:11:25] INFO: Pipeline - All commands have been dispatched
[2016-04-15 14:11:57] INFO: Optimizer - Mean loss values for validation at iteration 6193 is: {'loss': 2.5589616, 'mse': 1.5380768}
[2016-04-15 14:12:04] INFO: Optimizer - Training score at iteration 6200: {'loss': array(1.3876805305480957, dtype=float32), 'mse': array(1.1779985427856445, dtype=float32)}
[2016-04-15 14:12:56] INFO: Optimizer - Training score at iteration 6250: {'loss': array(0.9649991989135742, dtype=float32), 'mse': array(0.9823437333106995, dtype=float32)}
[2016-04-15 14:13:48] INFO: Optimizer - Training score at iteration 6300: {'loss': array(2.944833278656006, dtype=float32), 'mse': array(1.7160515785217285, dtype=float32)}
[2016-04-15 14:14:39] INFO: Optimizer - Training score at iteration 6350: {'loss': array(2.6850812435150146, dtype=float32), 'mse': array(1.6386216878890991, dtype=float32)}
[2016-04-15 14:15:45] INFO: Optimizer - Mean loss values for validation at iteration 6393 is: {'loss': 2.5654776, 'mse': 1.5353386}
[2016-04-15 14:15:52] INFO: Optimizer - Training score at iteration 6400: {'loss': array(2.0865869522094727, dtype=float32), 'mse': array(1.444502353668213, dtype=float32)}
[2016-04-15 14:16:43] INFO: Optimizer - Training score at iteration 6450: {'loss': array(0.6583791971206665, dtype=float32), 'mse': array(0.8114056587219238, dtype=float32)}
[2016-04-15 14:17:27] INFO: Pipeline - Complete signal received.
[2016-04-15 14:17:27] INFO: Pipeline - Stopping.