In [ ]:
import sys
sys.path.append('..')

from deepgraph.utils.logging import log
from deepgraph.utils.common import batch_parallel, ConfigMixin, shuffle_in_unison_inplace, pickle_dump
from deepgraph.utils.image import batch_pad_mirror
from deepgraph.constants import *
from deepgraph.conf import rng

from deepgraph.pipeline import Processor, Packet

In [ ]:
from deepgraph.nn.init import *
class Transformer(Processor):
    """
    Apply online random augmentation.
    """
    def __init__(self, name, shapes, config, buffer_size=10):
        super(Transformer, self).__init__(name, shapes, config, buffer_size)
        self.mean = None

    def init(self):
        if self.conf("mean_file") is not None:
            self.mean = np.load(self.conf("mean_file"))
        else:
            log("Transformer - No mean file specified.", LOG_LEVEL_WARNING)

    def process(self):
        packet = self.pull()
        # Return if no data is there
        if not packet:
            return False
        # Unpack
        data, label = packet.data
        # Do processing
        log("Transformer - Processing data", LOG_LEVEL_VERBOSE)
        
        h = 240
        w = 320
        
        start = time.time()
        # Mean
        if packet.phase == PHASE_TRAIN or packet.phase == PHASE_VAL:
            data = data.astype(np.float32)
            if self.mean is not None:
                std = self.conf("std")
                for idx in range(data.shape[0]):
                    # Subtract mean
                    data[idx] = data[idx] - self.mean.astype(np.float32)
                    if std is not None:
                        data[idx] =  data[idx] * std
            if self.conf("offset") is not None:
                label -= self.conf("offset")

        if packet.phase == PHASE_TRAIN:
             # Do elementwise operations
            data_old = data
            label_old = label
            data = np.zeros((data_old.shape[0], data_old.shape[1], h, w), dtype=np.float32)
            label = np.zeros((label_old.shape[0], h, w), dtype=np.float32)
            for idx in range(data.shape[0]):
                # Rotate
                # We rotate before cropping to be able to get filled corners
                # Maybe even adjust the border after rotating
                deg = np.random.randint(-5,6)
                # Operate on old data. Careful - data is already in float so we need to normalize and rescale afterwards
                # data_old[idx] = 255. * rotate_transformer_rgb_uint8(data_old[idx] * 0.003921568627, deg).astype(np.float32)
                # label_old[idx] = rotate_transformer_scalar_float32(label_old[idx], deg)
                
                # Take care of any empty areas, we crop on a smaller surface depending on the angle
                # TODO Remove this once loss supports masking
                shift = 0 #np.tan((deg/180.) * math.pi)
                # Random crops
                #cy = rng.randint(data_old.shape[2] - h - shift, size=1)
                #cx = rng.randint(data_old.shape[3] - w - shift, size=1)

                data[idx] = data_old[idx]
                label[idx] = label_old[idx]

                # Flip horizontally with probability 0.5
                """
                p = rng.randint(2)
                if p > 0:
                    data[idx] = data[idx, :, :, ::-1]
                    label[idx] = label[idx, :, ::-1]

                # RGB we mult with a random value between 0.8 and 1.2
                r = rng.randint(80,121) / 100.
                g = rng.randint(80,121) / 100.
                b = rng.randint(80,121) / 100.
                data[idx, 0] = data[idx, 0] * r
                data[idx, 1] = data[idx, 1] * g
                data[idx, 2] = data[idx, 2] * b
                """
            # Shuffle
            # data, label = shuffle_in_unison_inplace(data, label)
            
        elif packet.phase == PHASE_VAL:
            # Center crop
            pass
            #cy = (data.shape[2] - h) // 2
            #cx = (data.shape[3] - w) // 2
            #data = data[:, :, cy:cy+h, cx:cx+w]
            #label = label[:, cy:cy+h, cx:cx+w]
            
        end = time.time()
        log("Transformer - Processing took " + str(end - start) + " seconds.", LOG_LEVEL_VERBOSE)
        # Try to push into queue as long as thread should not terminate
        self.push(Packet(identifier=packet.id, phase=packet.phase, num=2, data=(data, label)))
        return True

    def setup_defaults(self):
        super(Transformer, self).setup_defaults()
        self.conf_default("mean_file", None)
        self.conf_default("offset", None)
        self.conf_default("std", 1.0)

In [ ]:
from theano.tensor.nnet import relu

from deepgraph.graph import *
from deepgraph.nn.core import *
from deepgraph.nn.conv import *
from deepgraph.nn.loss import *

from deepgraph.pipeline import Optimizer, H5DBLoader, Pipeline

# Print to console for testing


def build_u_graph():
    graph = Graph("u_depth")

    """
    Inputs
    """
    data = Data(graph, "data", T.ftensor4, shape=(-1, 3, 240, 320))
    label = Data(graph, "label", T.ftensor3, shape=(-1, 1, 240, 320), config={
        "phase": PHASE_TRAIN
    })
    """
    Contractive part
    """
    conv_1 = Conv2D(
        graph,
        "conv_1",
        config={
            "channels": 64,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    conv_2 = Conv2D(
        graph,
        "conv_2",
        config={
            "channels": 64,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    pool_2 = Pool(graph, "pool_2", config={
        "kernel": (2, 2)
    })
    conv_3 = Conv2D(
        graph,
        "conv_3",
        config={
            "channels": 128,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    conv_4 = Conv2D(
        graph,
        "conv_4",
        config={
            "channels": 128,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    pool_4 = Pool(graph, "pool_4", config={
        "kernel": (2, 2)
    })
    conv_5 = Conv2D(
        graph,
        "conv_5",
        config={
            "channels": 256,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    conv_6 = Conv2D(
        graph,
        "conv_6",
        config={
            "channels": 256,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )

    pool_6 = Pool(graph, "pool_6", config={
        "kernel": (2, 2),
    })

    conv_7 = Conv2D(
        graph,
        "conv_7",
        config={
            "channels": 512,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    conv_8 = Conv2D(
        graph,
        "conv_8",
        config={
            "channels": 512,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    pool_8 = Pool(graph, "pool_8", config={
        "kernel": (2, 2)
    })

    """
    Prediction core
    """
    conv_9 = Conv2D(
        graph,
        "conv_9",
        config={
            "channels": 128,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    fl_10 = Flatten(graph, "pc_10", config={
        "dims" : 2    
    })
    fc_10a = Dense(graph, "fc_10a", config={
            "out": 4096,
            "activation": None,
            "weight_filler": xavier(),
            "bias_filler": constant(1)
    })
    dp_10a = Dropout(graph, "dp_10a", config={
    })
    fc_10 = Dense(graph, "fc_10", config={
            "out": 19200,
            "activation": None,
            "weight_filler": xavier(),
            "bias_filler": constant(1)
    })
    dp_10 = Dropout(graph, "dp_10", config={
    })
    rs_10 = Reshape(graph, "rs_10", config={
            "shape": (-1, 64, 15, 20)
    })
    conv_10 = Conv2D(
            graph,
            "conv_10",
            config={
                "channels": 64,
                "kernel": (3, 3),
                "border_mode": 1,
                "activation": relu,
                "weight_filler": xavier(gain="relu"),
                "bias_filler": constant(0)
            }
    )
    """
    Expansive path
    """
    up_11 = Upsample(graph, "up_11", config={
        "kernel": (2, 2)
    })
    upconv_11 = Conv2D(
        graph,
        "upconv_11",
        config={
            "channels": 512,
            "kernel": (3,3),
            "border_mode": 1,
            "activation": None,
            "weight_filler": xavier(),
            "bias_filler": constant(0)
    })
    
    conv_12 = Conv2D(
        graph,
        "conv_12",
        config={
            "channels": 512,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    conv_13 = Conv2D(
        graph,
        "conv_13",
        config={
            "channels": 512,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    up_14 = Upsample(graph, "up_14", config={
        "kernel": (2, 2)
    })
    upconv_14 = Conv2D(
        graph,
        "upconv_14",
        config={
            "channels": 256,
            "kernel": (3,3),
            "border_mode": 1,
            "activation": None,
            "weight_filler": xavier(),
            "bias_filler": constant(0)
    })
    conv_15 = Conv2D(
        graph,
        "conv_15",
        config={
            "channels": 256,
            "kernel": (3, 3),
            "border_mode": 1,
            "weight_filler": xavier(),
            "bias_filler": constant(0)
        }
    )
    conv_16 = Conv2D(
        graph,
        "conv_16",
        config={
            "channels": 256,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )

    up_17 = Upsample(graph, "up_17", config={
        "kernel": (2, 2)
    })
    upconv_17 = Conv2D(
        graph,
        "upconv_17",
        config={
            "channels": 128,
            "kernel": (3,3),
            "border_mode": 1,
            "activation": None,
            "weight_filler": xavier(),
            "bias_filler": constant(0)
    })
    conv_18 = Conv2D(
        graph,
        "conv_18",
        config={
            "channels": 128,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    conv_19 = Conv2D(
        graph,
        "conv_19",
        config={
            "channels": 128,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    up_20 = Upsample(graph, "up_20", config={
        "mode": "constant",
        "kernel": (2, 2)
    })
    upconv_20 = Conv2D(
        graph,
        "upconv_20",
        config={
            "channels": 64,
            "kernel": (3,3),
            "border_mode": 1,
            "activation": None,
            "weight_filler": xavier(),
            "bias_filler": constant(0)
    })
   
    conv_21 = Conv2D(
        graph,
        "conv_21",
        config={
            "channels": 64,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    conv_22 = Conv2D(
        graph,
        "conv_22",
        config={
            "channels": 64,
            "kernel": (3, 3),
            "border_mode": 1,
            "activation": relu,
            "weight_filler": xavier(gain="relu"),
            "bias_filler": constant(0)
        }
    )
    conv_23 = Conv2D(
        graph,
        "conv_23",
        config={
            "channels": 1,
            "kernel": (1, 1),
            "weight_filler": xavier(),
            "bias_filler": constant(0)
        }
    )

    """
    Feed forward nodes
    """
    

    concat_20 = Concatenate(graph, "concat_20", config={
        "axis": 1
    })
    
    concat_17 = Concatenate(graph, "concat_17", config={
        "axis": 1
    })

    concat_14 = Concatenate(graph, "concat_14", config={
        "axis": 1
    })

    concat_11 = Concatenate(graph, "concat_11", config={
        "axis": 1
    })


    """
    Losses / Error
    """
    loss = EuclideanLoss(graph, "loss")

    error = MSE(graph, "mse", config={
        "root": True,
        "is_output": True,
        "phase": PHASE_TRAIN
    })
    
    """
    Make connections
    """
    data.connect(conv_1)
    conv_1.connect(conv_2)
    conv_2.connect(concat_20)
    conv_2.connect(pool_2)

    pool_2.connect(conv_3)
    conv_3.connect(conv_4)
    conv_4.connect(concat_17)
    conv_4.connect(pool_4)
    pool_4.connect(conv_5)
    conv_5.connect(conv_6)
    conv_6.connect(concat_14)
    conv_6.connect(pool_6)
    pool_6.connect(conv_7)
    conv_7.connect(conv_8)
    conv_8.connect(concat_11)
    conv_8.connect(pool_8)
    pool_8.connect(conv_9)
    conv_9.connect(fl_10)
    fl_10.connect(fc_10a)
    fc_10a.connect(dp_10a)
    dp_10a.connect(fc_10)
    fc_10.connect(dp_10)
    dp_10.connect(rs_10)
    rs_10.connect(conv_10)
    conv_10.connect(up_11)
    up_11.connect(upconv_11)
    upconv_11.connect(concat_11)
    concat_11.connect(conv_12)
    conv_12.connect(conv_13)
    conv_13.connect(up_14)
    up_14.connect(upconv_14)
    upconv_14.connect(concat_14)
    concat_14.connect(conv_15)
    conv_15.connect(conv_16)
    conv_16.connect(up_17)
    up_17.connect(upconv_17)
    upconv_17.connect(concat_17)
    concat_17.connect(conv_18)
    conv_18.connect(conv_19)
    conv_19.connect(up_20)
    up_20.connect(upconv_20)
    upconv_20.connect(concat_20)
    concat_20.connect(conv_21)
    conv_21.connect(conv_22)
    conv_22.connect(conv_23)

    conv_23.connect(loss)
    label.connect(loss)

    conv_23.connect(error)
    label.connect(error)
    


    return graph


if __name__ == "__main__":

    batch_size = 8
    chunk_size = 10*batch_size
    transfer_shape = ((chunk_size, 3, 240, 320), (chunk_size, 240, 320))

    g = build_u_graph()

    # Build the training pipeline
    db_loader = H5DBLoader("db", ((chunk_size, 3, 480, 640), (chunk_size, 1, 480, 640)), config={
        "db": '/home/ga29mix/nashome/data/nyu_depth_v2_combined_50.hdf5',
        # "db": '../data/nyu_depth_unet_large.hdf5',
        "key_data": "images",
        "key_label": "depths",
        "chunk_size": chunk_size
    })
    transformer = Transformer("tr", transfer_shape, config={
        # Measured for the data-set
        # "offset": 2.7321029
        "mean_file" : "/home/ga29mix/nashome/data/nyu_depth_v2_combined_50.npy",
        "std": 1.0 / 76.18328376
    })
    optimizer = Optimizer("opt", g, transfer_shape, config={
        "batch_size":  batch_size,
        "chunk_size": chunk_size,
        "learning_rate": 0.001,
        # "learning_rate": 0.000001 converges ( a bit)
        "momentum": 0.9,
        "weight_decay": 0.0005,
        "print_freq": 200,
        "save_freq": 10000,
        # "weights": "../data/vnet_init_2_iter_4500.zip",
        "save_prefix": "../data/vnet"
    })

    p = Pipeline(config={
        "validation_frequency": 15,
        "cycles": 3000
    })
    p.add(db_loader)
    p.add(transformer)
    p.add(optimizer)
    p.run()

In [ ]:


In [ ]:


In [ ]:
%matplotlib inline
import matplotlib.pyplot as plt
l = np.array([e["loss"] for e in optimizer.losses])
print len(l)
plt.plot(l)

# print g.last_updates[2].get_value()

In [ ]: