[2016-04-12 10:04:59] INFO: Pipeline - Starting computation
[2016-04-12 10:04:59] INFO: Graph - Setting up graph
[2016-04-12 10:04:59] INFO: Node - data has shape (-1, 1, 228, 304)
[2016-04-12 10:04:59] INFO: Node - label has shape (-1, 1, 228, 304)
[2016-04-12 10:04:59] INFO: Node - conv_c1_1 has shape (-1, 64, 228, 304)
[2016-04-12 10:04:59] INFO: Node - conv_c1_2 has shape (-1, 64, 228, 304)
[2016-04-12 10:04:59] INFO: Node - pool_c0 has shape (-1, 64, 114, 152)
[2016-04-12 10:04:59] INFO: Node - conv_c2_1 has shape (-1, 128, 114, 152)
[2016-04-12 10:04:59] INFO: Node - conv_c2_2 has shape (-1, 128, 114, 152)
[2016-04-12 10:04:59] INFO: Node - up_e2 has shape (-1, 128, 228, 304)
[2016-04-12 10:04:59] INFO: Node - up_conv_e2 has shape (-1, 64, 228, 304)
[2016-04-12 10:04:59] INFO: Node - concat_1 has shape (-1, 128, 228, 304)
[2016-04-12 10:04:59] INFO: Node - conv_e1_1 has shape (-1, 64, 228, 304)
[2016-04-12 10:04:59] INFO: Node - conv_e1_2 has shape (-1, 64, 228, 304)
[2016-04-12 10:04:59] INFO: Node - conv_e_f has shape (-1, 1, 228, 304)
[2016-04-12 10:04:59] INFO: Node - loss has shape (1,)
[2016-04-12 10:04:59] INFO: Node - mse has shape (1,)
[2016-04-12 10:05:00] INFO: Graph - Invoking Theano compiler
[2016-04-12 10:05:11] INFO: Optimizer - Compilation finished
[2016-04-12 10:06:00] INFO: Optimizer - Training score at iteration 100: {'loss': array(0.006321268156170845, dtype=float32), 'mse': array(0.07950640469789505, dtype=float32)}
[2016-04-12 10:06:00] INFO: Optimizer - Mean loss values for validation at iteration 100 is: {'loss': 0.0062991846, 'mse': 0.079367399}
[2016-04-12 10:06:49] INFO: Optimizer - Training score at iteration 200: {'loss': array(0.004687233362346888, dtype=float32), 'mse': array(0.06846337020397186, dtype=float32)}
[2016-04-12 10:06:50] INFO: Optimizer - Mean loss values for validation at iteration 200 is: {'loss': 0.0046745148, 'mse': 0.068370424}
[2016-04-12 10:07:39] INFO: Optimizer - Training score at iteration 300: {'loss': array(0.0036131320521235466, dtype=float32), 'mse': array(0.06010933220386505, dtype=float32)}
[2016-04-12 10:07:40] INFO: Optimizer - Mean loss values for validation at iteration 300 is: {'loss': 0.0036044579, 'mse': 0.060037136}
[2016-04-12 10:08:29] INFO: Optimizer - Training score at iteration 400: {'loss': array(0.0028670369647443295, dtype=float32), 'mse': array(0.05354471877217293, dtype=float32)}
[2016-04-12 10:08:30] INFO: Optimizer - Mean loss values for validation at iteration 400 is: {'loss': 0.0028606611, 'mse': 0.053485148}
[2016-04-12 10:09:19] INFO: Optimizer - Training score at iteration 500: {'loss': array(0.0023098746314644814, dtype=float32), 'mse': array(0.048061154782772064, dtype=float32)}
[2016-04-12 10:09:19] INFO: Optimizer - Mean loss values for validation at iteration 500 is: {'loss': 0.0023048681, 'mse': 0.048009042}
[2016-04-12 10:10:08] INFO: Optimizer - Training score at iteration 600: {'loss': array(0.0018436993705108762, dtype=float32), 'mse': array(0.042938318103551865, dtype=float32)}
[2016-04-12 10:10:09] INFO: Optimizer - Mean loss values for validation at iteration 600 is: {'loss': 0.0018395841, 'mse': 0.042890374}
[2016-04-12 10:10:58] INFO: Optimizer - Training score at iteration 700: {'loss': array(0.0014639387372881174, dtype=float32), 'mse': array(0.038261450827121735, dtype=float32)}
[2016-04-12 10:10:58] INFO: Optimizer - Mean loss values for validation at iteration 700 is: {'loss': 0.0014604795, 'mse': 0.038216218}
[2016-04-12 10:11:47] INFO: Optimizer - Training score at iteration 800: {'loss': array(0.001163272769190371, dtype=float32), 'mse': array(0.0341067835688591, dtype=float32)}
[2016-04-12 10:11:47] INFO: Optimizer - Mean loss values for validation at iteration 800 is: {'loss': 0.0011606845, 'mse': 0.034068819}
[2016-04-12 10:12:36] INFO: Optimizer - Training score at iteration 900: {'loss': array(0.0009355314541608095, dtype=float32), 'mse': array(0.03058645874261856, dtype=float32)}
[2016-04-12 10:12:37] INFO: Optimizer - Mean loss values for validation at iteration 900 is: {'loss': 0.00093351543, 'mse': 0.030553484}
[2016-04-12 10:13:05] INFO: Pipeline - All commands have been dispatched
[2016-04-12 10:13:26] INFO: Optimizer - Training score at iteration 1000: {'loss': array(0.000757161935325712, dtype=float32), 'mse': array(0.027516575530171394, dtype=float32)}
[2016-04-12 10:13:26] INFO: Optimizer - Saving intermediate model state
[2016-04-12 10:13:26] INFO: Graph - Model file saved as: ../data/unet_test_two_paths_only_checkerboard_iter_1000.zip
[2016-04-12 10:13:26] INFO: Optimizer - Mean loss values for validation at iteration 1000 is: {'loss': 0.00075557758, 'mse': 0.027487772}
[2016-04-12 10:13:26] INFO: Pipeline - Complete signal received.
[2016-04-12 10:13:26] INFO: Pipeline - Stopping.