Deep Convolutional GANs

In this notebook, you'll build a GAN using convolutional layers in the generator and discriminator. This is called a Deep Convolutional GAN, or DCGAN for short. The DCGAN architecture was first explored last year and has seen impressive results in generating new images, you can read the original paper here.

You'll be training DCGAN on the Street View House Numbers (SVHN) dataset. These are color images of house numbers collected from Google street view. SVHN images are in color and much more variable than MNIST.

So, we'll need a deeper and more powerful network. This is accomplished through using convolutional layers in the discriminator and generator. It's also necessary to use batch normalization to get the convolutional networks to train. The only real changes compared to what you saw previously are in the generator and discriminator, otherwise the rest of the implementation is the same.


In [1]:
%matplotlib inline

import pickle as pkl

import matplotlib.pyplot as plt
import numpy as np
from scipy.io import loadmat
import tensorflow as tf

In [2]:
!mkdir data


mkdir: data: File exists

Getting the data

Here you can download the SVHN dataset. Run the cell above and it'll download to your machine.


In [3]:
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm

data_dir = 'data/'

if not isdir(data_dir):
    raise Exception("Data directory doesn't exist!")

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(data_dir + "train_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/train_32x32.mat',
            data_dir + 'train_32x32.mat',
            pbar.hook)

if not isfile(data_dir + "test_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Testing Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/test_32x32.mat',
            data_dir + 'test_32x32.mat',
            pbar.hook)

These SVHN files are .mat files typically used with Matlab. However, we can load them in with scipy.io.loadmat which we imported above.


In [4]:
trainset = loadmat(data_dir + 'train_32x32.mat')
testset = loadmat(data_dir + 'test_32x32.mat')

Here I'm showing a small sample of the images. Each of these is 32x32 with 3 color channels (RGB). These are the real images we'll pass to the discriminator and what the generator will eventually fake.


In [5]:
idx = np.random.randint(0, trainset['X'].shape[3], size=36)
fig, axes = plt.subplots(6, 6, sharex=True, sharey=True, figsize=(5,5),)
for ii, ax in zip(idx, axes.flatten()):
    ax.imshow(trainset['X'][:,:,:,ii], aspect='equal')
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
plt.subplots_adjust(wspace=0, hspace=0)


Here we need to do a bit of preprocessing and getting the images into a form where we can pass batches to the network. First off, we need to rescale the images to a range of -1 to 1, since the output of our generator is also in that range. We also have a set of test and validation images which could be used if we're trying to identify the numbers in the images.


In [6]:
def scale(x, feature_range=(-1, 1)):
    # scale to (0, 1)
    x = ((x - x.min())/(255 - x.min()))
    
    # scale to feature_range
    min, max = feature_range
    x = x * (max - min) + min
    return x

In [7]:
class Dataset:
    def __init__(self, train, test, val_frac=0.5, shuffle=False, scale_func=None):
        split_idx = int(len(test['y'])*(1 - val_frac))
        self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
        self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
        self.train_x, self.train_y = train['X'], train['y']
        
        self.train_x = np.rollaxis(self.train_x, 3)
        self.valid_x = np.rollaxis(self.valid_x, 3)
        self.test_x = np.rollaxis(self.test_x, 3)
        
        if scale_func is None:
            self.scaler = scale
        else:
            self.scaler = scale_func
        self.shuffle = shuffle
        
    def batches(self, batch_size):
        if self.shuffle:
            idx = np.arange(len(dataset.train_x))
            np.random.shuffle(idx)
            self.train_x = self.train_x[idx]
            self.train_y = self.train_y[idx]
        
        n_batches = len(self.train_y)//batch_size
        for ii in range(0, len(self.train_y), batch_size):
            x = self.train_x[ii:ii+batch_size]
            y = self.train_y[ii:ii+batch_size]
            
            yield self.scaler(x), y

Network Inputs

Here, just creating some placeholders like normal.


In [8]:
def model_inputs(real_dim, z_dim):
    inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    
    return inputs_real, inputs_z

Generator

Here you'll build the generator network. The input will be our noise vector z as before. Also as before, the output will be a $tanh$ output, but this time with size 32x32 which is the size of our SVHN images.

What's new here is we'll use convolutional layers to create our new images. The first layer is a fully connected layer which is reshaped into a deep and narrow layer, something like 4x4x1024 as in the original DCGAN paper. Then we use batch normalization and a leaky ReLU activation. Next is a transposed convolution where typically you'd halve the depth and double the width and height of the previous layer. Again, we use batch normalization and leaky ReLU. For each of these layers, the general scheme is convolution > batch norm > leaky ReLU.

You keep stacking layers up like this until you get the final transposed convolution layer with shape 32x32x3. Below is the archicture used in the original DCGAN paper:

Note that the final layer here is 64x64x3, while for our SVHN dataset, we only want it to be 32x32x3.

Exercise: Build the transposed convolutional network for the generator in the function below. Be sure to use leaky ReLUs on all the layers except for the last tanh layer, as well as batch normalization on all the transposed convolutional layers except the last one.


In [9]:
def generator(z, output_dim, reuse=False, alpha=0.2, training=True):
    with tf.variable_scope('generator', reuse=reuse):
        # First fully connected layer
        x1 = tf.layers.dense(z, 4*4*512)
        # Reshape it to start the convolutional stack
        x1 = tf.reshape(x1, (-1, 4, 4, 512))
        x1 = tf.layers.batch_normalization(x1, training=training)
        x1 = tf.maximum(alpha * x1, x1)
        # 4x4x512 now
        
        x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=training)
        x2 = tf.maximum(alpha * x2, x2)
        # 8x8x256 now
        
        x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=training)
        x3 = tf.maximum(alpha * x3, x3)
        # 16x16x128 now
        
        # Output layer
        logits = tf.layers.conv2d_transpose(x3, output_dim, 5, strides=2, padding='same')
        # 32x32x3 now
        
        out = tf.tanh(logits)
        
        return out

Discriminator

Here you'll build the discriminator. This is basically just a convolutional classifier like you've built before. The input to the discriminator are 32x32x3 tensors/images. You'll want a few convolutional layers, then a fully connected layer for the output. As before, we want a sigmoid output, and you'll need to return the logits as well. For the depths of the convolutional layers I suggest starting with 16, 32, 64 filters in the first layer, then double the depth as you add layers. Note that in the DCGAN paper, they did all the downsampling using only strided convolutional layers with no maxpool layers.

You'll also want to use batch normalization with tf.layers.batch_normalization on each layer except the first convolutional and output layers. Again, each layer should look something like convolution > batch norm > leaky ReLU.

Note: in this project, your batch normalization layers will always use batch statistics. (That is, always set training to True.) That's because we are only interested in using the discriminator to help train the generator. However, if you wanted to use the discriminator for inference later, then you would need to set the training parameter appropriately.

Exercise: Build the convolutional network for the discriminator. The input is a 32x32x3 images, the output is a sigmoid plus the logits. Again, use Leaky ReLU activations and batch normalization on all the layers except the first.


In [10]:
def discriminator(x, reuse=False, alpha=0.2):
    with tf.variable_scope('discriminator', reuse=reuse):
        # Input layer is 32x32x3
        x1 = tf.layers.conv2d(x, 64, 5, strides=2, padding='same')
        relu1 = tf.maximum(alpha * x1, x1)
        # 16x16x64
        
        x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        # 8x8x128
        
        x3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same')
        bn3 = tf.layers.batch_normalization(x3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        # 4x4x256

        # Flatten it
        flat = tf.reshape(relu3, (-1, 4*4*256))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
        
        return out, logits

Model Loss

Calculating the loss like before, nothing new here.


In [11]:
def model_loss(input_real, input_z, output_dim, alpha=0.2):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    g_model = generator(input_z, output_dim, alpha=alpha)
    d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, alpha=alpha)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss

Optimizers

Not much new here, but notice how the train operations are wrapped in a with tf.control_dependencies block so the batch normalization layers can update their population statistics.


In [12]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt

Building the model

Here we can use the functions we defined about to build the model as a class. This will make it easier to move the network around in our code since the nodes and operations in the graph are packaged in one object.


In [13]:
class GAN:
    def __init__(self, real_size, z_size, learning_rate, alpha=0.2, beta1=0.5):
        tf.reset_default_graph()
        
        self.input_real, self.input_z = model_inputs(real_size, z_size)
        
        self.d_loss, self.g_loss = model_loss(self.input_real, self.input_z,
                                              real_size[2], alpha=0.2)
        
        self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, learning_rate, beta1)

Here is a function for displaying generated images.


In [14]:
def view_samples(epoch, samples, nrows, ncols, figsize=(5,5)):
    fig, axes = plt.subplots(figsize=figsize, nrows=nrows, ncols=ncols, 
                             sharey=True, sharex=True)
    for ax, img in zip(axes.flatten(), samples[epoch]):
        ax.axis('off')
        img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
        ax.set_adjustable('box-forced')
        im = ax.imshow(img, aspect='equal')
   
    plt.subplots_adjust(wspace=0, hspace=0)
    return fig, axes

And another function we can use to train our network. Notice when we call generator to create the samples to display, we set training to False. That's so the batch normalization layers will use the population statistics rather than the batch statistics. Also notice that we set the net.input_real placeholder when we run the generator's optimizer. The generator doesn't actually use it, but we'd get an error without it because of the tf.control_dependencies block we created in model_opt.


In [15]:
def train(net, dataset, epochs, batch_size, print_every=10, show_every=100, figsize=(5,5)):
    saver = tf.train.Saver()
    sample_z = np.random.uniform(-1, 1, size=(72, z_size))

    samples, losses = [], []
    steps = 0

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for e in range(epochs):
            for x, y in dataset.batches(batch_size):
                steps += 1

                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))

                # Run optimizers
                _ = sess.run(net.d_opt, feed_dict={net.input_real: x, net.input_z: batch_z})
                _ = sess.run(net.g_opt, feed_dict={net.input_z: batch_z, net.input_real: x})

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = net.d_loss.eval({net.input_z: batch_z, net.input_real: x})
                    train_loss_g = net.g_loss.eval({net.input_z: batch_z})

                    print("Epoch {}/{}...".format(e+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))

                if steps % show_every == 0:
                    gen_samples = sess.run(
                                   generator(net.input_z, 3, reuse=True, training=False),
                                   feed_dict={net.input_z: sample_z})
                    samples.append(gen_samples)
                    _ = view_samples(-1, samples, 6, 12, figsize=figsize)
                    plt.show()

        saver.save(sess, './checkpoints/generator.ckpt')

    with open('samples.pkl', 'wb') as f:
        pkl.dump(samples, f)
    
    return losses, samples

Hyperparameters

GANs are very sensitive to hyperparameters. A lot of experimentation goes into finding the best hyperparameters such that the generator and discriminator don't overpower each other. Try out your own hyperparameters or read the DCGAN paper to see what worked for them.

Exercise: Find hyperparameters to train this GAN. The values found in the DCGAN paper work well, or you can experiment on your own. In general, you want the discriminator loss to be around 0.3, this means it is correctly classifying images as fake or real about 50% of the time.


In [16]:
real_size = (32,32,3)
z_size = 100
learning_rate = 0.001
batch_size = 64
epochs = 1
alpha = 0.01
beta1 = 0.9

# Create the network
net = GAN(real_size, z_size, learning_rate, alpha=alpha, beta1=beta1)

In [17]:
# Load the data and train the network here
dataset = Dataset(trainset, testset)
losses, samples = train(net, dataset, epochs, batch_size, figsize=(10,5))


Epoch 1/1... Discriminator Loss: 0.1703... Generator Loss: 10.7381
Epoch 1/1... Discriminator Loss: 0.3807... Generator Loss: 1.4777
Epoch 1/1... Discriminator Loss: 0.1160... Generator Loss: 5.0738
Epoch 1/1... Discriminator Loss: 0.0430... Generator Loss: 9.9644
Epoch 1/1... Discriminator Loss: 0.0565... Generator Loss: 3.2454
Epoch 1/1... Discriminator Loss: 0.0315... Generator Loss: 4.2703
Epoch 1/1... Discriminator Loss: 0.0420... Generator Loss: 3.7142
Epoch 1/1... Discriminator Loss: 0.0992... Generator Loss: 5.1163
Epoch 1/1... Discriminator Loss: 0.0224... Generator Loss: 4.7558
Epoch 1/1... Discriminator Loss: 0.0861... Generator Loss: 3.1103
Epoch 1/1... Discriminator Loss: 0.1037... Generator Loss: 3.3948
Epoch 1/1... Discriminator Loss: 0.0120... Generator Loss: 5.8388
Epoch 1/1... Discriminator Loss: 0.0031... Generator Loss: 9.8854
Epoch 1/1... Discriminator Loss: 0.1198... Generator Loss: 4.8397
Epoch 1/1... Discriminator Loss: 0.0224... Generator Loss: 4.3442
Epoch 1/1... Discriminator Loss: 0.0603... Generator Loss: 4.4921
Epoch 1/1... Discriminator Loss: 0.0785... Generator Loss: 7.7261
Epoch 1/1... Discriminator Loss: 0.0386... Generator Loss: 5.5790
Epoch 1/1... Discriminator Loss: 0.0539... Generator Loss: 3.4271
Epoch 1/1... Discriminator Loss: 0.0917... Generator Loss: 3.0737
Epoch 1/1... Discriminator Loss: 0.0079... Generator Loss: 6.3575
Epoch 1/1... Discriminator Loss: 0.0003... Generator Loss: 8.8890
Epoch 1/1... Discriminator Loss: 0.0105... Generator Loss: 4.6238
Epoch 1/1... Discriminator Loss: 0.0021... Generator Loss: 6.3371
Epoch 1/1... Discriminator Loss: 0.0046... Generator Loss: 5.9848
Epoch 1/1... Discriminator Loss: 0.0015... Generator Loss: 7.1569
Epoch 1/1... Discriminator Loss: 0.0019... Generator Loss: 7.4058
Epoch 1/1... Discriminator Loss: 0.0011... Generator Loss: 7.4803
Epoch 1/1... Discriminator Loss: 0.0013... Generator Loss: 7.0230
Epoch 1/1... Discriminator Loss: 0.0014... Generator Loss: 7.0067
Epoch 1/1... Discriminator Loss: 0.0009... Generator Loss: 7.2423
Epoch 1/1... Discriminator Loss: 0.0009... Generator Loss: 7.1377
Epoch 1/1... Discriminator Loss: 0.0007... Generator Loss: 7.3345
Epoch 1/1... Discriminator Loss: 0.0005... Generator Loss: 7.7628
Epoch 1/1... Discriminator Loss: 0.0008... Generator Loss: 7.3591
Epoch 1/1... Discriminator Loss: 0.0006... Generator Loss: 7.6660
Epoch 1/1... Discriminator Loss: 0.0010... Generator Loss: 7.1871
Epoch 1/1... Discriminator Loss: 0.0010... Generator Loss: 7.6450
Epoch 1/1... Discriminator Loss: 0.0005... Generator Loss: 8.0077
Epoch 1/1... Discriminator Loss: 0.0019... Generator Loss: 7.0113
Epoch 1/1... Discriminator Loss: 0.0018... Generator Loss: 6.8829
Epoch 1/1... Discriminator Loss: 0.0017... Generator Loss: 6.6681
Epoch 1/1... Discriminator Loss: 0.0033... Generator Loss: 5.7958
Epoch 1/1... Discriminator Loss: 0.0014... Generator Loss: 6.5607
Epoch 1/1... Discriminator Loss: 0.0005... Generator Loss: 7.5902
Epoch 1/1... Discriminator Loss: 0.0022... Generator Loss: 7.6434
Epoch 1/1... Discriminator Loss: 0.0007... Generator Loss: 7.7485
Epoch 1/1... Discriminator Loss: 0.0019... Generator Loss: 6.8084
Epoch 1/1... Discriminator Loss: 0.0055... Generator Loss: 6.4362
Epoch 1/1... Discriminator Loss: 0.0038... Generator Loss: 6.2010
Epoch 1/1... Discriminator Loss: 0.0292... Generator Loss: 4.0564
Epoch 1/1... Discriminator Loss: 0.0001... Generator Loss: 9.0465
Epoch 1/1... Discriminator Loss: 0.0000... Generator Loss: 11.5846
Epoch 1/1... Discriminator Loss: 0.0003... Generator Loss: 11.5973
Epoch 1/1... Discriminator Loss: 0.0019... Generator Loss: 7.0688
Epoch 1/1... Discriminator Loss: 0.0029... Generator Loss: 6.5964
Epoch 1/1... Discriminator Loss: 0.0139... Generator Loss: 5.8375
Epoch 1/1... Discriminator Loss: 0.0034... Generator Loss: 9.4459
Epoch 1/1... Discriminator Loss: 0.0148... Generator Loss: 7.1909
Epoch 1/1... Discriminator Loss: 0.0032... Generator Loss: 9.6013
Epoch 1/1... Discriminator Loss: 0.1575... Generator Loss: 14.4762
Epoch 1/1... Discriminator Loss: 0.3544... Generator Loss: 4.4951
Epoch 1/1... Discriminator Loss: 0.4959... Generator Loss: 4.6670
Epoch 1/1... Discriminator Loss: 0.3861... Generator Loss: 3.3134
Epoch 1/1... Discriminator Loss: 0.1793... Generator Loss: 4.0529
Epoch 1/1... Discriminator Loss: 0.0650... Generator Loss: 4.2589
Epoch 1/1... Discriminator Loss: 0.0995... Generator Loss: 3.5674
Epoch 1/1... Discriminator Loss: 0.1228... Generator Loss: 3.6920
Epoch 1/1... Discriminator Loss: 0.0586... Generator Loss: 5.3561
Epoch 1/1... Discriminator Loss: 0.2115... Generator Loss: 4.2072
Epoch 1/1... Discriminator Loss: 0.1479... Generator Loss: 3.0726
Epoch 1/1... Discriminator Loss: 0.0242... Generator Loss: 4.5353
Epoch 1/1... Discriminator Loss: 0.0283... Generator Loss: 4.4809
Epoch 1/1... Discriminator Loss: 0.0712... Generator Loss: 5.2138
Epoch 1/1... Discriminator Loss: 0.0267... Generator Loss: 8.4855
Epoch 1/1... Discriminator Loss: 0.0973... Generator Loss: 5.9086
Epoch 1/1... Discriminator Loss: 0.1565... Generator Loss: 3.1744
Epoch 1/1... Discriminator Loss: 0.1691... Generator Loss: 5.1408
Epoch 1/1... Discriminator Loss: 0.4979... Generator Loss: 3.0572
Epoch 1/1... Discriminator Loss: 0.2813... Generator Loss: 3.7070
Epoch 1/1... Discriminator Loss: 0.0585... Generator Loss: 3.9374
Epoch 1/1... Discriminator Loss: 0.0164... Generator Loss: 7.0210
Epoch 1/1... Discriminator Loss: 0.1123... Generator Loss: 8.0764
Epoch 1/1... Discriminator Loss: 0.1296... Generator Loss: 6.2571
Epoch 1/1... Discriminator Loss: 0.1340... Generator Loss: 2.7373
Epoch 1/1... Discriminator Loss: 0.0191... Generator Loss: 8.1783
Epoch 1/1... Discriminator Loss: 0.0221... Generator Loss: 6.0549
Epoch 1/1... Discriminator Loss: 0.0372... Generator Loss: 5.6877
Epoch 1/1... Discriminator Loss: 0.0245... Generator Loss: 13.3889
Epoch 1/1... Discriminator Loss: 0.0202... Generator Loss: 5.9149
Epoch 1/1... Discriminator Loss: 0.2853... Generator Loss: 3.3527
Epoch 1/1... Discriminator Loss: 0.4203... Generator Loss: 3.5790
Epoch 1/1... Discriminator Loss: 0.3688... Generator Loss: 2.5206
Epoch 1/1... Discriminator Loss: 0.3145... Generator Loss: 8.5361
Epoch 1/1... Discriminator Loss: 0.0001... Generator Loss: 10.3322
Epoch 1/1... Discriminator Loss: 0.0002... Generator Loss: 11.2900
Epoch 1/1... Discriminator Loss: 0.0005... Generator Loss: 8.2375
Epoch 1/1... Discriminator Loss: 0.0328... Generator Loss: 4.1904
Epoch 1/1... Discriminator Loss: 0.0091... Generator Loss: 6.1572
Epoch 1/1... Discriminator Loss: 0.0578... Generator Loss: 4.4657
Epoch 1/1... Discriminator Loss: 0.0252... Generator Loss: 7.3914
Epoch 1/1... Discriminator Loss: 0.0259... Generator Loss: 6.6137
Epoch 1/1... Discriminator Loss: 0.0419... Generator Loss: 5.2796
Epoch 1/1... Discriminator Loss: 0.1316... Generator Loss: 8.5209
Epoch 1/1... Discriminator Loss: 0.1873... Generator Loss: 4.5680
Epoch 1/1... Discriminator Loss: 0.0059... Generator Loss: 6.8515
Epoch 1/1... Discriminator Loss: 0.0511... Generator Loss: 5.8420
Epoch 1/1... Discriminator Loss: 0.0021... Generator Loss: 16.1716
Epoch 1/1... Discriminator Loss: 0.9431... Generator Loss: 1.2067
Epoch 1/1... Discriminator Loss: 0.5027... Generator Loss: 2.1207
Epoch 1/1... Discriminator Loss: 0.1215... Generator Loss: 4.1572
Epoch 1/1... Discriminator Loss: 0.2158... Generator Loss: 3.1012
Epoch 1/1... Discriminator Loss: 0.2800... Generator Loss: 1.8322
Epoch 1/1... Discriminator Loss: 0.2140... Generator Loss: 3.5683

In [18]:
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator', alpha=0.5)
plt.plot(losses.T[1], label='Generator', alpha=0.5)
plt.title("Training Losses")
plt.legend()


Out[18]:
<matplotlib.legend.Legend at 0x129f8f940>

In [19]:
_ = view_samples(-1, samples, 6, 12, figsize=(10,5))



In [ ]: