In [1]:
from matplotlib import pylab
import nengo
import random
import numpy as np
import gzip as gz
import cPickle
from cPickle import load
try:
import Image
except ImportError:
from PIL import Image
from scipy.sparse.linalg import svds
import scipy
from scipy import ndimage
import matplotlib.pyplot as plt
import matplotlib.animation as animation
#%matplotlib inline #Makes visualizations appar inline (Commented out because animation popup as new window)
In [2]:
def rotate_img(img, degrees):
'''Rotates image the degrees passed in counterclockwise
Reshapes image to original shape
'''
original = img.shape
newImg = scipy.ndimage.interpolation.rotate(np.reshape(img, (dim,dim), 'F'),degrees,reshape=False)
newImg = np.reshape(newImg, original, 'F')
return newImg
In [71]:
conn_synapse = 0.1 #post synaptic time constant to use for filtering (pstc) - what does changing this do?
probe_synapse = 0.01 #pstc
#multiplier = 2 #not used
n_neurons = 5000
direct = False #Direct - function computed explicitly instead of in neurons
stop_time = 3.0
run_time = 3.0 #in seconds
In [34]:
dim = 7 #size of the image
img = np.zeros((dim,dim)) #create a simple image
img[3] = 1 #image is a horizontal line
img = img.flatten()
#View the image
#print(img)
#pylab.imshow(np.reshape(img, (dim,dim), 'F').T, cmap='Greys_r')
#plt.show()
In [35]:
def stim_func(t):
'''returns the image for first 0.1s'''
if t < 0.1:
return img
else:
return [0 for _ in range(len(img))]
In [76]:
def connection_func(x):
'''takes the output from the first ensemble and rotates it 10 degree'''
return rotate_img(x,10)
In [77]:
with nengo.Network() as net:
if direct:
neuron_type = nengo.Direct() #function computed explicitly, instead of in neurons
else:
neuron_type = nengo.LIF() #spiking version of the leaky integrate-and-fire neuron model
#Input stimulus - provide data to the ensemble
ipt = nengo.Node(stim_func)
#Group of neurons that collectively represent information(vector)
ens = nengo.Ensemble(n_neurons,
dimensions=dim**2, #pixels of the image
neuron_type=neuron_type)
nengo.Connection(ipt, #source nengo object
ens, #destination object
synapse=None, #pstc
transform=1) #linear transformation, what does changing this do?
conn = nengo.Connection(ens, ens, synapse=conn_synapse,transform=1, function=connection_func)
probe = nengo.Probe(ens, attr='decoded_output',#sample_every=0.001,
synapse=probe_synapse)
In [78]:
sim = nengo.Simulator(net)
In [79]:
sim.run(run_time)
In [13]:
pylab.imshow(np.reshape(img, (dim,dim), 'F'), cmap='Greys_r')
Out[13]:
In [14]:
'''Image at stop time'''
pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][int(stop_time*1000)-1]],
(dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)
Out[14]:
In [15]:
'''Image at start time'''
pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][1]],
(dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)
Out[15]:
In [82]:
'''Animation for Probe output'''
fig = plt.figure()
def updatefig(i):
im = pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][i]],
(dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)
return im,
ani = animation.FuncAnimation(fig, updatefig, interval=1, blit=True)
plt.show()
In [33]:
# save the output
#cPickle.dump(sim.data[probe], open( "Buffer_rotations_connection_direct.p", "wb" ) )
#cPickle.dump(sim.data[probe], open( "Buffer_rotations_connection_LIF.p", "wb" ) )
#cPickle.dump(sim.data[probe], open( "Buffer_rotations_connection_LIF_4000.p", "wb" ) )