In [1]:
from matplotlib import pylab
import nengo
import random
import numpy as np
import gzip as gz
import cPickle
from cPickle import load
try:
import Image
except ImportError:
from PIL import Image
from scipy.sparse.linalg import svds
import scipy
from scipy import ndimage
import matplotlib.pyplot as plt
import matplotlib.animation as animation
#%matplotlib inline #Makes visualizations appar inline (Commented out because animation popup as new window)
In [2]:
def load_img():
a = Image.open("three64.png") #three64, three128, three256, three512 http://www.flaticon.com/free-icon/number-three-in-a-circle_56587
a = np.array(a)
#32*32 img came with shape (32,32,4)
#a = a[:,:,:-3]
#a = a.squeeze()
return a.reshape(dim**2,)
In [3]:
def rotate_img(img, degrees):
'''Rotates image the degrees passed in counterclockwise
Reshapes image to original shape
'''
original = img.shape
newImg = scipy.ndimage.interpolation.rotate(np.reshape(img, (dim,dim), 'F'),degrees,reshape=False)
newImg = np.reshape(newImg, original, 'F')
return newImg
In [4]:
conn_synapse = 0.1 #post synaptic time constant to use for filtering (pstc) - what does changing this do?
probe_synapse = 0.01 #pstc
multiplier = 2 #not used
n_neurons = 5000
direct = True #Direct - function computed explicitly instead of in neurons
stop_time = 3.0
run_time = 3.0 #in seconds
In [5]:
dim = 64 #size of the image
img = load_img()
In [6]:
def stim_func(t):
'''returns the image for first 0.1s'''
if t < 0.1:
return img
else:
return [0 for _ in range(len(img))]
In [7]:
def node_func(t,x):
return rotate_img(x,1)
In [8]:
with nengo.Network() as net:
if direct:
neuron_type = nengo.Direct() #function computed explicitly, instead of in neurons
else:
neuron_type = nengo.LIF() #spiking version of the leaky integrate-and-fire neuron model
#Input stimulus - provide data to the ensemble
ipt = nengo.Node(stim_func)
ensArr = nengo.networks.EnsembleArray(100, dim**2, ens_dimensions=1) #incresing num neurons has small effect on run time
node = nengo.Node(node_func,size_in = dim**2, size_out =dim**2)
for i in range(ensArr.n_ensembles):
nengo.Connection(ipt[i],ensArr.ea_ensembles[i])
nengo.Connection(ensArr.ea_ensembles[i],node[i])
nengo.Connection(node[i],ensArr.ea_ensembles[i])
ens = nengo.Ensemble(n_neurons, dimensions = dim**2)
nengo.Connection(node, ens)
probe = nengo.Probe(ens, attr='decoded_output',#sample_every=0.001,
synapse=probe_synapse)
In [9]:
sim = nengo.Simulator(net)
In [10]:
sim.run(run_time)
In [ ]:
pylab.imshow(np.reshape(img, (dim,dim), 'F'), cmap='Greys_r')
In [ ]:
'''Image at stop time'''
pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][int(stop_time*1000)-1]],
(dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)
In [ ]:
'''Image at start time'''
pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][1]],
(dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)
In [ ]:
'''Animation for Probe output'''
fig = plt.figure()
def updatefig(i):
im = pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][i]],
(dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)
return im,
ani = animation.FuncAnimation(fig, updatefig, interval=1, blit=True)
plt.show()
In [ ]:
# save the output
#cPickle.dump(sim.data[probe], open( "Buffer_rotations_larger_images_64.p", "wb" ) )