In [5]:
from matplotlib import pylab
import nengo
import random
import numpy as np
import gzip as gz
import cPickle
from cPickle import load
try:
    import Image
except ImportError:
    from PIL import Image
from scipy.sparse.linalg import svds
import scipy
from scipy import ndimage
import matplotlib.pyplot as plt
import matplotlib.animation as animation

#%matplotlib inline #Makes visualizations appar inline (Commented out because animation popup as new window)

In [6]:
#The code in this cell is for reading the images from the MNIST database and not part of the brain model.
def load_img(path, dims):
    """Load the image at path and return an array representing the raster.
    Flattens image. Shifts pixel activations such that 0 represents gray,
    normalizes the output array.
    Keyword arguments:
    path -- str, path of the image to be loaded.
    dims -- (w, h), where w,h are ints indicating dimensions of the image (in
        px)."""

    img = Image.open(path).resize(dims).getdata()
    img.convert('L')
    img = subtract(array(img).flatten(), 127.5)
    return img/norm(img)


def load_data(filename):
    """Uncompress, unpickle and return a .pkl.gz file.
    Keyword arguments:
    filename -- str, a valid file path"""

    return load(gz.open(filename))

def load_mini_mnist(option=None):
    """Load and return the first \%10 of the images in the mnist dataset.
    Does not return labels. Pass in 'train', 'valid' or 'test' if you want to
    load a specific subset of the dataset.
    Keyword arguments:
    option -- str (default=None)."""

    mini_mnist = load(gz.open('./mini_mnist.pkl.gz', 'rb'))
    if option == 'train':
        return mini_mnist[0]
    elif option == 'valid':
        return mini_mnist[1]
    elif option == 'test':
        return mini_mnist[2]
    else:
        return mini_mnist

In [7]:
def rotate_img(img, degrees):
    '''
    img is the dim**2 by 1 vector representing the pixel values.
    Rotates image the degrees passed in counterclockwise
    Returns the Reshaped image (to original shape which is the one dimensional vector)
    dim is a global variable
    '''
    original = img.shape
    
    newImg = scipy.ndimage.interpolation.rotate(np.reshape(img, (dim,dim), 'F'),degrees,reshape=False)
    newImg = np.reshape(newImg, original, 'F')
    return newImg

In [61]:
conn_synapse = 0.1 #post synaptic time constant to use for filtering (pstc) - what does changing this do?
probe_synapse = 0.01 #pstc
multiplier = 2 #not used
n_neurons = 5000
direct = True #Direct - function computed explicitly instead of in neurons 
stop_time = 3.0
run_time = 3.0 #in seconds

In [9]:
dim = 28 #size of the image
mnist = load_mini_mnist()
#train = mnist[0] #collection of training images
img = mnist[1][0] #image to be used for testing
#compress_size = 400 #?
#basis, S, V = svds(train.T, k=compress_size) #Used for encoding and decoding information 
    #a set of vectors representing what a hand drawn number should look like?

In [10]:
#Need same number of vectors in basis as number of neurons (randomly sample from basis)
#expanded_basis = np.array([random.choice(basis.T) for _ in range(n_neurons)])

In [53]:
def stim_func(t):
    '''returns the image for first 0.1s'''
    if t < 0.1:
        return img
    else:
        return [0 for _ in range(len(img))]

In [54]:
def stim_func_scalar(t):
    if t < 0.1:
        return 0
    elif t < 0.2:
        return 1
    elif t<0.3:
        return 0
    else:
        return 6

In [55]:
def connection_func(x):
    '''takes the output from the first ensemble and rotates it 1 degree'''
    return rotate_img(x[:-1],x[-1])

In [62]:
#A network is primarily used for grouping together related objects and connections for visualization purposes
with nengo.Network() as net:
    
    if direct:
        neuron_type = nengo.Direct() #function computed explicitly, instead of in neurons
    else:
        neuron_type = nengo.LIF() #spiking version of the leaky integrate-and-fire neuron model

    #Input stimulus - provide data to the ensemble
    ipt = nengo.Node(stim_func)
    
    #Scalar input for rate of rotation
    scalar_ipt = nengo.Node(stim_func_scalar)
    
    '''An array of ensembles. This acts, in some ways, like a single high-dimensional ensemble,
    but actually consists of many sub-ensembles, each one representing a separate dimension. 
    This tends to be much faster to create and can be more accurate than having one huge 
    high-dimensional ensemble. However, since the neurons represent different dimensions separately,
    we cannot compute nonlinear interactions between those dimensions.'''
    ensArr = nengo.networks.EnsembleArray(100, dim**2+1, ens_dimensions=1,neuron_type=neuron_type)
    #incresing num neurons has smaller effect on run time
    
    #Connect each pixel of the input to its own ensemble
    nengo.Connection(ipt,ensArr.input[:-1])
    
    #Connect the scalar input to the array ensemble
    nengo.Connection(scalar_ipt, ensArr.input[-1])
    
    '''When connecting nodes, threw error: 
    Validation error when setting 'Connection.function_info': Cannot apply functions to passthrough nodes
    This is a workaround (https://github.com/nengo/nengo/issues/805)'''
    ensArr.output.output=lambda t, x: x

    #output node of ensArr brings all pixels together, connection performs the rotation and feeds into input node of ensArr
    nengo.Connection(ensArr.output, ensArr.input[:-1], function=connection_func)

    #Gathering output of ensArr
    probe = nengo.Probe(ensArr.output,# attr='decoded_output',#sample_every=0.001,
                       synapse=probe_synapse)

In [63]:
sim = nengo.Simulator(net)

In [64]:
sim.run(run_time) #LIF 2:25 #Direct 0:25


Simulation finished in 0:00:29.                                                 

In [13]:
#Original image
pylab.imshow(np.reshape(img, (dim,dim), 'F'), cmap='Greys_r')


Out[13]:
<matplotlib.image.AxesImage at 0x3afdf4a8>

In [17]:
'''Image at stop time'''
pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][int(stop_time*1000)-1]], 
                             (dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)


Out[17]:
<matplotlib.image.AxesImage at 0x389c7c18>

In [19]:
'''Image at start time'''
pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][1]], 
                             (dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)


Out[19]:
<matplotlib.image.AxesImage at 0x3a3ca470>

In [65]:
'''Animation for Probe output'''
fig = plt.figure()

def updatefig(i):
    im = pylab.imshow(np.reshape([0. if x < 0.00001 else x for x in sim.data[probe][i][:-1]],
                                 (dim, dim), 'F'), cmap=plt.get_cmap('Greys_r'),animated=True)
    
    return im,

ani = animation.FuncAnimation(fig, updatefig, interval=1, blit=True)
plt.show()

In [66]:
# save the output
#cPickle.dump(sim.data[probe], open( "Buffer_rotations_in_connection_ensemble_array_scalar_direct.p", "wb" ) )
#cPickle.dump(sim.data[probe], open( "Buffer_rotations_in_connection_ensemble_array_scalar_LIF.p", "wb" ) )