In [1]:
import os
import csv
import platform
import pandas as pd
import networkx as nx
from graph_partitioning import GraphPartitioning, utils

run_metrics = True

cols = ["WASTE", "CUT RATIO", "EDGES CUT", "TOTAL COMM VOLUME", "Qds", "CONDUCTANCE", "MAXPERM", "RBSE", "NMI", "FSCORE", "FSCORE RELABEL IMPROVEMENT", "LONELINESS"]

pwd = %pwd

config = {

    "DATA_FILENAME": os.path.join(pwd, "data", "predition_model_tests", "network", "network_$$.txt"),
    "OUTPUT_DIRECTORY": os.path.join(pwd, "output"),

    # Set which algorithm is run for the PREDICTION MODEL.
    # Either: 'FENNEL' or 'SCOTCH'
    "PREDICTION_MODEL_ALGORITHM": "FENNEL",

    # Alternativly, read input file for prediction model.
    # Set to empty to generate prediction model using algorithm value above.
    "PREDICTION_MODEL": "",

    
    "PARTITIONER_ALGORITHM": "FENNEL",

    # File containing simulated arrivals. This is used in simulating nodes
    # arriving at the shelter. Nodes represented by line number; value of
    # 1 represents a node as arrived; value of 0 represents the node as not
    # arrived or needing a shelter.
    "SIMULATED_ARRIVAL_FILE": os.path.join(pwd,
                                           "data",
                                           "predition_model_tests",
                                           "dataset_6_randomize",
                                           "simulated_arrival_list",
                                           "percentage_of_prediction_randomized_££",
                                           "arrival_££_$$.txt"
                                          ),

    # File containing the prediction of a node arriving. This is different to the
    # simulated arrivals, the values in this file are known before the disaster.
    "PREDICTION_LIST_FILE": os.path.join(pwd,
                                         "data",
                                         "predition_model_tests",
                                         "dataset_6_randomize",
                                         "prediction_list",
                                         "prediction_$$.txt"
                                        ),

    # File containing the geographic location of each node, in "x,y" format.
    "POPULATION_LOCATION_FILE": os.path.join(pwd,
                                             "data",
                                             "predition_model_tests",
                                             "coordinates",
                                             "coordinates_$$.txt"
                                            ),

    # Number of shelters
    "num_partitions": 4,

    # The number of iterations when making prediction model
    "num_iterations": 15,

    # Percentage of prediction model to use before discarding
    # When set to 0, prediction model is discarded, useful for one-shot
    "prediction_model_cut_off": .0,

    # Alpha value used in one-shot (when restream_batches set to 1)
    "one_shot_alpha": 0.5,
    
    "use_one_shot_alpha" : False,
    
    # Number of arrivals to batch before recalculating alpha and restreaming.
    "restream_batches": 50,

    # When the batch size is reached: if set to True, each node is assigned
    # individually as first in first out. If set to False, the entire batch
    # is processed and empty before working on the next batch.
    "sliding_window": False,

    # Create virtual nodes based on prediction model
    "use_virtual_nodes": False,

    # Virtual nodes: edge weight
    "virtual_edge_weight": 1.0,
    
    # Loneliness score parameter. Used when scoring a partition by how many
    # lonely nodes exist.
    "loneliness_score_param": 1.2,

    
    # whether metrics are computed or not
    "compute_metrics_enabled": True,

    ####
    # GRAPH MODIFICATION FUNCTIONS

    # Also enables the edge calculation function.
    "graph_modification_functions": True,

    # If set, the node weight is set to 100 if the node arrives at the shelter,
    # otherwise the node is removed from the graph.
    "alter_arrived_node_weight_to_100": False,

    # Uses generalized additive models from R to generate prediction of nodes not
    # arrived. This sets the node weight on unarrived nodes the the prediction
    # given by a GAM.
    # Needs POPULATION_LOCATION_FILE to be set.
    "alter_node_weight_to_gam_prediction": False,
    
    # Enables edge expansion when graph_modification_functions is set to true
    "edge_expansion_enabled": True,

    # The value of 'k' used in the GAM will be the number of nodes arrived until
    # it reaches this max value.
    "gam_k_value": 100,

    # Alter the edge weight for nodes that haven't arrived. This is a way to
    # de-emphasise the prediction model for the unknown nodes.
    "prediction_model_emphasis": 1.0,
    
    # This applies the prediction_list_file node weights onto the nodes in the graph
    # when the prediction model is being computed and then removes the weights
    # for the cutoff and batch arrival modes
    "apply_prediction_model_weights": True,

    "SCOTCH_LIB_PATH": os.path.join(pwd, "libs/scotch/macOS/libscotch.dylib")
    if 'Darwin' in platform.system()
    else "/usr/local/lib/libscotch.so",
    
    # Path to the PaToH shared library
    "PATOH_LIB_PATH": os.path.join(pwd, "libs/patoh/lib/macOS/libpatoh.dylib")
    if 'Darwin' in platform.system()
    else os.path.join(pwd, "libs/patoh/lib/linux/libpatoh.so"),
    
    "PATOH_ITERATIONS": 5,
        
    # Expansion modes: 'avg_node_weight', 'total_node_weight', 'smallest_node_weight'
    # 'largest_node_weight'
    # add '_squared' or '_sqrt' at the end of any of the above for ^2 or sqrt(weight)
    # i.e. 'avg_node_weight_squared
    "PATOH_HYPEREDGE_EXPANSION_MODE": 'no_expansion',
    
    # Edge Expansion: average, total, minimum, maximum, product, product_squared, sqrt_product
    "EDGE_EXPANSION_MODE" : 'total',
    
    # Whether nodes should be reordered using a centrality metric for optimal node assignments in batch mode
    # This is specific to FENNEL and at the moment Leverage Centrality is used to compute new noder orders
    "FENNEL_NODE_REORDERING_ENABLED": False,
    
    # Whether the Friend of a Friend scoring system is active during FENNEL partitioning.
    # FOAF employs information about a node's friends to determine the best partition when
    # this node arrives at a shelter and no shelter has friends already arrived
    "FENNEL_FRIEND_OF_A_FRIEND_ENABLED": False,
    
    # Alters how much information to print. Keep it at 1 for this notebook.
    # 0 - will print nothing, useful for batch operations.
    # 1 - prints basic information on assignments and operations.
    # 2 - prints more information as it batches arrivals.
    "verbose": 1
}

gp = GraphPartitioning(config)

# Optional: shuffle the order of nodes arriving
# Arrival order should not be shuffled if using GAM to alter node weights
#random.shuffle(gp.arrival_order)

%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [2]:
import scipy
from copy import deepcopy
import time

iterations = 1000


for i in range(0, iterations):
    if (i%20):
        print('Network', str(i))
    conf = deepcopy(config)
    
    conf["DATA_FILENAME"] = conf["DATA_FILENAME"].replace('$$', str(i + 1))
    conf["SIMULATED_ARRIVAL_FILE"] = conf["SIMULATED_ARRIVAL_FILE"].replace('$$', str(i + 1))
    conf["SIMULATED_ARRIVAL_FILE"] = conf["SIMULATED_ARRIVAL_FILE"].replace('££', str(100))

    conf["PREDICTION_LIST_FILE"] = conf["PREDICTION_LIST_FILE"].replace('$$', str(i + 1))
    conf["POPULATION_LOCATION_FILE"] = conf["POPULATION_LOCATION_FILE"].replace('$$', str(i + 1))
    conf["compute_metrics_enabled"] = False

    
    outFileName = os.path.join(pwd, "data", "predition_model_tests", "network", "pm", "network_pm_$$.txt")
    outFileName = outFileName.replace('$$', str(i + 1))

    #with open(outFileName, "r") as inf:
    #    assignments = np.fromiter(inf.readlines(), dtype=np.int32)
    #    print(assignments)
    
    with GraphPartitioning(conf) as gp:
        gp.verbose = 0
        start_time = time.time()
        gp.load_network()
        gp.init_partitioner()
        gp.prediction_model()
        utils.savePredictionFile(outFileName, gp.assignments)
        elapsed_time = time.time() - start_time
        print(elapsed_time)


14.644943952560425
Network 1
13.552003145217896
Network 2
10.850716829299927
Network 3
10.282106876373291
Network 4
12.982872009277344
Network 5
11.384611129760742
Network 6
11.284723997116089
Network 7
10.931341171264648
Network 8
10.505635023117065
Network 9
11.55787968635559
Network 10
10.967909097671509
Network 11
10.639058828353882
Network 12
10.253243207931519
Network 13
11.748973846435547
Network 14
14.276217699050903
Network 15
10.902555227279663
Network 16
11.103389024734497
Network 17
10.996944189071655
Network 18
10.80606484413147
Network 19
12.041454076766968
11.330201864242554
Network 21
10.593719959259033
Network 22
10.748934030532837
Network 23
11.91309905052185
Network 24
11.009323120117188
Network 25
11.457216024398804
Network 26
12.004386901855469
Network 27
11.060141801834106
Network 28
10.651604175567627
Network 29
12.797855854034424
Network 30
11.099565982818604
Network 31
11.38326120376587
Network 32
11.627671718597412
Network 33
11.64102292060852
Network 34
10.586514234542847
Network 35
11.68077278137207
Network 36
14.767436981201172
Network 37
12.541691064834595
Network 38
12.121674060821533
Network 39
10.908851861953735
10.721510887145996
Network 41
10.73929762840271
Network 42
11.097683906555176
Network 43
12.011486291885376
Network 44
10.925938844680786
Network 45
11.220771789550781
Network 46
11.025048017501831
Network 47
11.263878107070923
Network 48
14.632208108901978
Network 49
11.62703824043274
Network 50
12.181599140167236
Network 51
11.926123142242432
Network 52
16.05070996284485
Network 53
13.952170133590698
Network 54
11.504473209381104
Network 55
11.76778507232666
Network 56
12.3262939453125
Network 57
14.901697874069214
Network 58
12.710621118545532
Network 59
13.530622243881226
11.059389352798462
Network 61
11.334560871124268
Network 62
10.607311964035034
Network 63
10.663928985595703
Network 64
10.677104234695435
Network 65
10.834100008010864
Network 66
10.65110182762146
Network 67
10.67152190208435
Network 68
10.882673025131226
Network 69
10.75371789932251
Network 70
10.570785999298096
Network 71
10.664764165878296
Network 72
10.654156684875488
Network 73
10.648860931396484
Network 74
10.652464151382446
Network 75
10.617493152618408
Network 76
10.545241117477417
Network 77
10.690592050552368
Network 78
11.100418090820312
Network 79
10.534992218017578
10.727819681167603
Network 81
10.544535160064697
Network 82
11.58922791481018
Network 83
10.67556095123291
Network 84
10.592381954193115
Network 85
10.738864183425903
Network 86
11.790980815887451
Network 87
13.335249185562134
Network 88
13.195901870727539
Network 89
12.328888177871704
Network 90
13.512873888015747
Network 91
15.824559926986694
Network 92
11.278203248977661
Network 93
10.343847036361694
Network 94
10.380918025970459
Network 95
10.539404153823853
Network 96
10.35902714729309
Network 97
10.366042852401733
Network 98
10.413448810577393
Network 99
10.280038118362427
10.490705966949463
Network 101
10.45012903213501
Network 102
10.354944944381714
Network 103
10.628115892410278
Network 104
12.167159795761108
Network 105
11.919193983078003
Network 106
11.422744989395142
Network 107
10.668837070465088
Network 108
10.770928859710693
Network 109
10.572125911712646
Network 110
10.353004217147827
Network 111
10.460323095321655
Network 112
14.014268159866333
Network 113
12.329112768173218
Network 114
10.970155000686646
Network 115
10.97649621963501
Network 116
10.71858525276184
Network 117
11.491621017456055
Network 118
11.378848791122437
Network 119
12.483035802841187
11.02646803855896
Network 121
11.049046754837036
Network 122
11.111156940460205
Network 123
11.855412006378174
Network 124
11.78543210029602
Network 125
12.936241865158081
Network 126
11.280802011489868
Network 127
12.348078966140747
Network 128
11.382184982299805
Network 129
12.473308801651001
Network 130
12.325791120529175
Network 131
12.082671880722046
Network 132
12.645617723464966
Network 133
13.037271738052368
Network 134
12.17229700088501
Network 135
11.872289657592773
Network 136
13.067012071609497
Network 137
11.939844131469727
Network 138
11.762784957885742
Network 139
12.567672967910767
11.652657985687256
Network 141
11.608400106430054
Network 142
11.18347716331482
Network 143
12.416459083557129
Network 144
12.339575052261353
Network 145
11.302345752716064
Network 146
12.292289972305298
Network 147
13.622242212295532
Network 148
12.851994276046753
Network 149
11.684953212738037
Network 150
11.663307905197144
Network 151
11.654683828353882
Network 152
13.028507232666016
Network 153
10.867164850234985
Network 154
10.929857015609741
Network 155
10.583285093307495
Network 156
10.468692064285278
Network 157
10.38400673866272
Network 158
10.456830978393555
Network 159
10.3619966506958
10.788753032684326
Network 161
10.862848043441772
Network 162
10.699142932891846
Network 163
10.598746299743652
Network 164
10.936469078063965
Network 165
10.895312070846558
Network 166
11.024163961410522
Network 167
10.758185863494873
Network 168
13.444609880447388
Network 169
10.47339677810669
Network 170
11.299237966537476
Network 171
13.433665990829468
Network 172
11.0486159324646
Network 173
10.474851131439209
Network 174
10.79373574256897
Network 175
11.965336799621582
Network 176
11.658013820648193
Network 177
12.2206289768219
Network 178
11.757102251052856
Network 179
11.863959074020386
12.217916011810303
Network 181
12.113319158554077
Network 182
11.6685950756073
Network 183
10.600584030151367
Network 184
11.14837098121643
Network 185
10.637696981430054
Network 186
11.73078203201294
Network 187
10.904274225234985
Network 188
10.569761037826538
Network 189
10.503219842910767
Network 190
10.590350866317749
Network 191
10.525663137435913
Network 192
10.5954110622406
Network 193
10.536439180374146
Network 194
10.508495092391968
Network 195
11.389801979064941
Network 196
12.051831007003784
Network 197
11.436237096786499
Network 198
10.556246042251587
Network 199
10.540558099746704
11.445597887039185
Network 201
12.573544025421143
Network 202
12.08991003036499
Network 203
13.093565225601196
Network 204
13.155328035354614
Network 205
12.918682098388672
Network 206
10.910112857818604
Network 207
10.497769117355347
Network 208
10.332934856414795
Network 209
11.723280906677246
Network 210
12.457896947860718
Network 211
10.476144313812256
Network 212
10.579939842224121
Network 213
11.25899600982666
Network 214
10.433963060379028
Network 215
10.426968097686768
Network 216
11.891087293624878
Network 217
11.05293607711792
Network 218
11.149799823760986
Network 219
13.455963850021362
11.39296007156372
Network 221
11.292412042617798
Network 222
11.25931978225708
Network 223
10.795698165893555
Network 224
10.427078247070312
Network 225
10.563801765441895
Network 226
10.320694923400879
Network 227
10.360302209854126
Network 228
10.382673025131226
Network 229
10.54590916633606
Network 230
10.582491159439087
Network 231
10.775291919708252
Network 232
10.814204216003418
Network 233
10.728084802627563
Network 234
11.321860790252686
Network 235
11.193823099136353
Network 236
11.187266111373901
Network 237
11.444382905960083
Network 238
12.026562213897705
Network 239
10.830497980117798
10.578953266143799
Network 241
10.522794008255005
Network 242
10.504314184188843
Network 243
11.156974077224731
Network 244
10.934485912322998
Network 245
10.723127126693726
Network 246
10.661027193069458
Network 247
10.843484878540039
Network 248
12.854064226150513
Network 249
11.668609142303467
Network 250
10.429644584655762
Network 251
10.57367491722107
Network 252
10.43283486366272
Network 253
10.564676761627197
Network 254
10.345713138580322
Network 255
10.449249982833862
Network 256
11.646626949310303
Network 257
10.747184991836548
Network 258
11.40024209022522
Network 259
11.831305980682373
12.971123933792114
Network 261
11.293137073516846
Network 262
10.559339046478271
Network 263
10.657487154006958
Network 264
10.59517526626587
Network 265
10.819230794906616
Network 266
11.253342151641846
Network 267
10.67504596710205
Network 268
10.49068021774292
Network 269
10.890466928482056
Network 270
11.01017713546753
Network 271
10.745911836624146
Network 272
10.650732040405273
Network 273
11.12242603302002
Network 274
10.980031967163086
Network 275
10.757856607437134
Network 276
10.55953311920166
Network 277
12.035441875457764
Network 278
11.157585859298706
Network 279
10.97793984413147
11.477290868759155
Network 281
11.387724161148071
Network 282
10.95807933807373
Network 283
10.545835971832275
Network 284
10.798908948898315
Network 285
12.085963010787964
Network 286
10.991563081741333
Network 287
10.415221929550171
Network 288
10.97069001197815
Network 289
10.58495807647705
Network 290
13.581505060195923
Network 291
11.331130981445312
Network 292
11.413944721221924
Network 293
11.367287874221802
Network 294
11.674072980880737
Network 295
10.92164921760559
Network 296
11.40960168838501
Network 297
10.581291913986206
Network 298
10.442342758178711
Network 299
10.470688819885254
10.530086040496826
Network 301
11.750968217849731
Network 302
11.063218116760254
Network 303
12.429799795150757
Network 304
11.559242963790894
Network 305
10.52783727645874
Network 306
10.424691200256348
Network 307
10.570085287094116
Network 308
10.998296976089478
Network 309
11.554052114486694
Network 310
12.02929401397705
Network 311
10.997623920440674
Network 312
10.931545734405518
Network 313
12.295111179351807
Network 314
12.897812843322754
Network 315
10.75781512260437
Network 316
10.826313018798828
Network 317
10.802216053009033
Network 318
10.713709115982056
Network 319
10.916794061660767
12.250097036361694
Network 321
12.309165716171265
Network 322
12.374579191207886
Network 323
12.791681051254272
Network 324
10.850138902664185
Network 325
12.808070182800293
Network 326
11.955379962921143
Network 327
10.995051860809326
Network 328
13.252762794494629
Network 329
13.17882490158081
Network 330
14.418582916259766
Network 331
13.314581871032715
Network 332
13.202927827835083
Network 333
11.686008930206299
Network 334
12.897142887115479
Network 335
12.906548976898193
Network 336
13.14093279838562
Network 337
12.900788068771362
Network 338
12.555619239807129
Network 339
11.989619970321655
12.258871078491211
Network 341
12.808010816574097
Network 342
13.532051086425781
Network 343
10.940821170806885
Network 344
12.902302980422974
Network 345
11.500699043273926
Network 346
10.507251977920532
Network 347
10.673181056976318
Network 348
11.63223385810852
Network 349
11.887722969055176
Network 350
11.708834171295166
Network 351
12.24892807006836
Network 352
11.26994800567627
Network 353
11.078551054000854
Network 354
12.568250179290771
Network 355
14.94387412071228
Network 356
11.771469116210938
Network 357
11.330647945404053
Network 358
12.49659514427185
Network 359
11.999649047851562
12.575291156768799
Network 361
11.505844831466675
Network 362
11.601990222930908
Network 363
11.108108043670654
Network 364
11.490034103393555
Network 365
11.844769954681396
Network 366
12.664881229400635
Network 367
11.464116096496582
Network 368
12.759828090667725
Network 369
12.459074974060059
Network 370
14.94562578201294
Network 371
11.464909076690674
Network 372
10.418416976928711
Network 373
11.196317911148071
Network 374
10.279384136199951
Network 375
11.121773958206177
Network 376
11.609507083892822
Network 377
10.377860069274902
Network 378
10.902845859527588
Network 379
11.607057809829712
10.838565826416016
Network 381
11.517497062683105
Network 382
11.357600927352905
Network 383
10.911065101623535
Network 384
11.326872110366821
Network 385
11.080616235733032
Network 386
11.027544021606445
Network 387
10.903243064880371
Network 388
11.701679944992065
Network 389
11.070364952087402
Network 390
10.429549932479858
Network 391
10.373594760894775
Network 392
10.484745979309082
Network 393
10.380593061447144
Network 394
10.728956937789917
Network 395
10.5400071144104
Network 396
10.396192073822021
Network 397
10.97742223739624
Network 398
12.138588190078735
Network 399
12.043335199356079
13.056024074554443
Network 401
11.60526418685913
Network 402
12.671924829483032
Network 403
12.205050706863403
Network 404
12.049319982528687
Network 405
11.87959885597229
Network 406
12.05355715751648
Network 407
11.55354905128479
Network 408
12.28801703453064
Network 409
11.612576007843018
Network 410
10.946768045425415
Network 411
11.521095752716064
Network 412
12.949191808700562
Network 413
11.922790050506592
Network 414
11.968348026275635
Network 415
11.79862093925476
Network 416
11.196202039718628
Network 417
11.351977825164795
Network 418
11.117484092712402
Network 419
10.41553807258606
11.807476043701172
Network 421
10.419933795928955
Network 422
10.51887321472168
Network 423
11.252797365188599
Network 424
12.778335094451904
Network 425
11.995381116867065
Network 426
12.387677907943726
Network 427
12.671002864837646
Network 428
12.045453071594238
Network 429
11.81138300895691
Network 430
12.576409816741943
Network 431
12.516256093978882
Network 432
12.912353038787842
Network 433
11.403755187988281
Network 434
12.312398910522461
Network 435
11.137797117233276
Network 436
11.938560009002686
Network 437
11.715870141983032
Network 438
10.42167615890503
Network 439
10.438484907150269
11.05168604850769
Network 441
11.076215028762817
Network 442
10.366163969039917
Network 443
11.633248090744019
Network 444
11.601120948791504
Network 445
11.515000104904175
Network 446
11.255628824234009
Network 447
12.76440691947937
Network 448
11.092900276184082
Network 449
11.400040864944458
Network 450
10.634737730026245
Network 451
12.007245063781738
Network 452
11.325860977172852
Network 453
11.63941216468811
Network 454
13.652014017105103
Network 455
11.768311977386475
Network 456
12.727920770645142
Network 457
11.313492059707642
Network 458
11.633470296859741
Network 459
10.586441278457642
11.840666770935059
Network 461
13.92094111442566
Network 462
12.220001220703125
Network 463
16.830830097198486
Network 464
11.680739164352417
Network 465
11.230384111404419
Network 466
12.44481110572815
Network 467
12.958031177520752
Network 468
11.63586688041687
Network 469
12.829101085662842
Network 470
11.151500225067139
Network 471
12.12516188621521
Network 472
11.280261993408203
Network 473
10.913970947265625
Network 474
15.306970834732056
Network 475
15.947036981582642
Network 476
15.087910890579224
Network 477
12.478164911270142
Network 478
11.216048002243042
Network 479
10.674907922744751
11.766319751739502
Network 481
11.429573059082031
Network 482
11.30290412902832
Network 483
10.592468976974487
Network 484
11.039900302886963
Network 485
10.798508167266846
Network 486
12.805403232574463
Network 487
12.876840829849243
Network 488
13.495568037033081
Network 489
13.917481422424316
Network 490
11.673619985580444
Network 491
11.491729021072388
Network 492
10.67631483078003
Network 493
10.515158891677856
Network 494
11.841936826705933
Network 495
11.676373481750488
Network 496
14.899085760116577
Network 497
15.350378036499023
Network 498
10.300749063491821
Network 499
12.087380170822144
11.766056060791016
Network 501
11.543300151824951
Network 502
14.317023992538452
Network 503
13.609092950820923
Network 504
10.920783758163452
Network 505
11.209012031555176
Network 506
11.11849308013916
Network 507
12.70925784111023
Network 508
12.71274185180664
Network 509
14.523035764694214
Network 510
11.930124998092651
Network 511
10.803925037384033
Network 512
14.747838020324707
Network 513
16.73136615753174
Network 514
14.575806856155396
Network 515
11.088974952697754
Network 516
12.566073179244995
Network 517
10.998601913452148
Network 518
10.874315977096558
Network 519
11.766756057739258
10.531510829925537
Network 521
10.608476877212524
Network 522
12.17402172088623
Network 523
10.577261924743652
Network 524
11.147510051727295
Network 525
14.606969833374023
Network 526
12.42766809463501
Network 527
14.698989868164062
Network 528
12.359166145324707
Network 529
12.093555927276611
Network 530
12.069445133209229
Network 531
15.077155113220215
Network 532
15.474139928817749
Network 533
11.513839960098267
Network 534
11.011839151382446
Network 535
12.107278823852539
Network 536
11.163019895553589
Network 537
11.136397123336792
Network 538
17.00553584098816
Network 539
22.874767065048218
20.505910634994507
Network 541
14.217045068740845
Network 542
15.070990085601807
Network 543
14.408427953720093
Network 544
13.632377862930298
Network 545
16.57557463645935
Network 546
11.742999076843262
Network 547
12.493983030319214
Network 548
21.739476919174194
Network 549
15.387563943862915
Network 550
21.13976812362671
Network 551
14.28282904624939
Network 552
23.48776602745056
Network 553
13.718572854995728
Network 554
19.14060091972351
Network 555
12.822901964187622
Network 556
20.59251880645752
Network 557
19.45289897918701
Network 558
13.047123908996582
Network 559
13.015074014663696
11.515673160552979
Network 561
12.214390993118286
Network 562
14.628389835357666
Network 563
15.521888971328735
Network 564
12.549508094787598
Network 565
13.166739225387573
Network 566
13.521945714950562
Network 567
12.976761817932129
Network 568
10.96926999092102
Network 569
10.602506399154663
Network 570
11.718757152557373
Network 571
12.071674823760986
Network 572
11.103953123092651
Network 573
10.549118041992188
Network 574
11.405743837356567
Network 575
10.68875002861023
Network 576
10.53869080543518
Network 577
10.595937967300415
Network 578
10.50754714012146
Network 579
10.621103048324585
10.742369174957275
Network 581
10.612316131591797
Network 582
10.461227893829346
Network 583
10.542480945587158
Network 584
10.49495792388916
Network 585
10.499074935913086
Network 586
10.758967876434326
Network 587
10.558166027069092
Network 588
10.732322931289673
Network 589
11.7812180519104
Network 590
10.601217031478882
Network 591
10.633140087127686
Network 592
10.976729154586792
Network 593
10.410202264785767
Network 594
10.497293710708618
Network 595
10.654052734375
Network 596
10.559494733810425
Network 597
10.578063011169434
Network 598
10.732609033584595
Network 599
10.454395294189453
10.497893810272217
Network 601
10.67461109161377
Network 602
10.617132902145386
Network 603
10.55843210220337
Network 604
10.443763017654419
Network 605
10.57301378250122
Network 606
10.522115230560303
Network 607
11.283466100692749
Network 608
10.726783037185669
Network 609
10.63627815246582
Network 610
10.503442764282227
Network 611
10.549455881118774
Network 612
10.698899984359741
Network 613
10.421218156814575
Network 614
12.120362281799316
Network 615
10.689775943756104
Network 616
10.511024713516235
Network 617
10.802291870117188
Network 618
10.78123688697815
Network 619
10.580292224884033
10.524998188018799
Network 621
10.548085927963257
Network 622
10.534857034683228
Network 623
11.004860877990723
Network 624
10.680406093597412
Network 625
10.904712915420532
Network 626
10.499382019042969
Network 627
10.584423065185547
Network 628
10.839339017868042
Network 629
10.485527038574219
Network 630
10.526855945587158
Network 631
10.436053991317749
Network 632
10.520746946334839
Network 633
10.453449964523315
Network 634
10.494370937347412
Network 635
10.709782123565674
Network 636
10.61103892326355
Network 637
10.593008995056152
Network 638
10.588717937469482
Network 639
10.416517972946167
10.383358001708984
Network 641
10.815568208694458
Network 642
10.393106937408447
Network 643
11.429915189743042
Network 644
10.641211032867432
Network 645
10.618391990661621
Network 646
10.675209999084473
Network 647
11.672439098358154
Network 648
10.543186902999878
Network 649
10.159003973007202
Network 650
10.245821952819824
Network 651
10.134292125701904
Network 652
10.263464212417603
Network 653
10.208754062652588
Network 654
10.24517297744751
Network 655
10.241004943847656
Network 656
10.233808040618896
Network 657
10.580530881881714
Network 658
17.837237119674683
Network 659
10.198042869567871
10.386625051498413
Network 661
10.409123182296753
Network 662
10.498580932617188
Network 663
10.250128746032715
Network 664
11.436161994934082
Network 665
10.668147087097168
Network 666
10.237093925476074
Network 667
10.95244312286377
Network 668
15.038702964782715
Network 669
13.060458898544312
Network 670
11.072703838348389
Network 671
10.199717044830322
Network 672
11.029626846313477
Network 673
10.338016986846924
Network 674
10.493085384368896
Network 675
10.564270973205566
Network 676
10.20496916770935
Network 677
10.263244152069092
Network 678
10.300102233886719
Network 679
10.538873195648193
10.593697786331177
Network 681
10.25516390800476
Network 682
10.153913021087646
Network 683
10.34584903717041
Network 684
10.299751996994019
Network 685
10.039456129074097
Network 686
10.237954139709473
Network 687
10.074148178100586
Network 688
10.114505290985107
Network 689
10.030817985534668
Network 690
10.34844183921814
Network 691
10.056632041931152
Network 692
10.225838899612427
Network 693
10.21563196182251
Network 694
10.186450242996216
Network 695
10.229326725006104
Network 696
10.287168025970459
Network 697
10.129611015319824
Network 698
10.115938663482666
Network 699
10.256425857543945
10.234848976135254
Network 701
14.092983961105347
Network 702
13.910635948181152
Network 703
10.22639799118042
Network 704
10.199424982070923
Network 705
10.735005855560303
Network 706
10.128566980361938
Network 707
10.365680932998657
Network 708
10.21797490119934
Network 709
10.35645318031311
Network 710
10.529380798339844
Network 711
10.176780939102173
Network 712
10.356608867645264
Network 713
10.208433866500854
Network 714
10.23682713508606
Network 715
10.325876951217651
Network 716
10.115339994430542
Network 717
10.2217857837677
Network 718
10.174535274505615
Network 719
10.35002589225769
10.21327805519104
Network 721
10.538527011871338
Network 722
10.22222089767456
Network 723
10.099896669387817
Network 724
10.134501218795776
Network 725
10.176809072494507
Network 726
10.15365195274353
Network 727
10.213145017623901
Network 728
10.09281587600708
Network 729
10.213190078735352
Network 730
10.1454758644104
Network 731
10.236051082611084
Network 732
14.736741304397583
Network 733
10.354925155639648
Network 734
10.129346132278442
Network 735
10.249093055725098
Network 736
10.113040685653687
Network 737
10.260302066802979
Network 738
10.124719858169556
Network 739
10.252582788467407
10.1965970993042
Network 741
10.149245262145996
Network 742
10.205223321914673
Network 743
10.894826889038086
Network 744
10.177812099456787
Network 745
10.135609149932861
Network 746
9.98163628578186
Network 747
10.124822854995728
Network 748
10.144874811172485
Network 749
10.148133993148804
Network 750
10.106614112854004
Network 751
10.313677072525024
Network 752
10.159423828125
Network 753
10.211190938949585
Network 754
10.158173084259033
Network 755
10.291172981262207
Network 756
10.132900714874268
Network 757
10.131182193756104
Network 758
10.227542161941528
Network 759
10.232232093811035
10.160104274749756
Network 761
10.253726959228516
Network 762
10.154397964477539
Network 763
10.195551872253418
Network 764
10.186465740203857
Network 765
10.150556325912476
Network 766
14.20721983909607
Network 767
10.266380071640015
Network 768
10.286734819412231
Network 769
10.221655130386353
Network 770
10.414297103881836
Network 771
10.18241572380066
Network 772
10.218053102493286
Network 773
10.168948888778687
Network 774
10.769500970840454
Network 775
10.181802034378052
Network 776
10.208900928497314
Network 777
10.236793994903564
Network 778
10.247021198272705
Network 779
10.299357891082764
10.23691201210022
Network 781
10.275837898254395
Network 782
10.245774030685425
Network 783
10.116858005523682
Network 784
10.137899160385132
Network 785
10.299829006195068
Network 786
10.022135019302368
Network 787
10.31430196762085
Network 788
10.046242237091064
Network 789
10.189461946487427
Network 790
10.194529056549072
Network 791
10.292250871658325
Network 792
10.184706211090088
Network 793
10.149478912353516
Network 794
10.163191080093384
Network 795
10.209826946258545
Network 796
10.193724870681763
Network 797
10.218464136123657
Network 798
10.21284818649292
Network 799
10.151371002197266
12.6614830493927
Network 801
12.00124192237854
Network 802
10.232485055923462
Network 803
10.271589756011963
Network 804
10.200844049453735
Network 805
10.218988180160522
Network 806
10.245762825012207
Network 807
10.168832063674927
Network 808
10.272761106491089
Network 809
10.418789148330688
Network 810
10.77816104888916
Network 811
10.297692060470581
Network 812
10.243489027023315
Network 813
10.275744915008545
Network 814
10.14757490158081
Network 815
10.17441201210022
Network 816
10.356076002120972
Network 817
10.095520734786987
Network 818
10.193787813186646
Network 819
10.241393327713013
10.09232497215271
Network 821
10.19662618637085
Network 822
10.18094277381897
Network 823
10.176155805587769
Network 824
10.276181936264038
Network 825
10.275239944458008
Network 826
10.16365122795105
Network 827
10.145062923431396
Network 828
10.240500926971436
Network 829
10.264042139053345
Network 830
10.100595951080322
Network 831
10.213459014892578
Network 832
10.181929111480713
Network 833
10.118169069290161
Network 834
10.174169301986694
Network 835
10.280795097351074
Network 836
10.167165994644165
Network 837
10.104542016983032
Network 838
10.818454027175903
Network 839
10.195739030838013
10.17665982246399
Network 841
10.252012014389038
Network 842
10.25291895866394
Network 843
10.248121976852417
Network 844
10.164115190505981
Network 845
10.119871854782104
Network 846
10.671363830566406
Network 847
10.701650857925415
Network 848
10.276984930038452
Network 849
10.151808023452759
Network 850
10.178792953491211
Network 851
10.233374118804932
Network 852
10.112236022949219
Network 853
10.293415069580078
Network 854
10.221856117248535
Network 855
10.226978778839111
Network 856
12.840874910354614
Network 857
12.192030906677246
Network 858
10.248043060302734
Network 859
9.977826833724976
10.320363998413086
Network 861
10.192039012908936
Network 862
12.546411991119385
Network 863
13.640580892562866
Network 864
10.349478244781494
Network 865
10.242188930511475
Network 866
10.191206932067871
Network 867
10.14678406715393
Network 868
10.199844121932983
Network 869
10.664983749389648
Network 870
15.750931024551392
Network 871
16.416815996170044
Network 872
12.52623200416565
Network 873
11.488524198532104
Network 874
13.57456088066101
Network 875
11.159013986587524
Network 876
10.927551984786987
Network 877
10.98546576499939
Network 878
11.138487100601196
Network 879
10.84097671508789
10.98914623260498
Network 881
12.966556787490845
Network 882
12.716209173202515
Network 883
11.69310998916626
Network 884
11.582737922668457
Network 885
11.845439910888672
Network 886
13.927227258682251
Network 887
17.937950372695923
Network 888
12.99788212776184
Network 889
13.714107990264893
Network 890
13.372155904769897
Network 891
12.262974977493286
Network 892
14.79194688796997
Network 893
12.354810953140259
Network 894
11.204355239868164
Network 895
12.38591480255127
Network 896
11.804666757583618
Network 897
11.746368169784546
Network 898
11.525010824203491
Network 899
12.433077096939087
11.501507997512817
Network 901
11.254080057144165
Network 902
11.541801929473877
Network 903
12.894521951675415
Network 904
12.545488834381104
Network 905
12.299123048782349
Network 906
11.636139869689941
Network 907
12.278823137283325
Network 908
11.2728590965271
Network 909
11.699474811553955
Network 910
11.830690145492554
Network 911
11.302181720733643
Network 912
11.316345930099487
Network 913
11.33622694015503
Network 914
12.152485132217407
Network 915
14.125194072723389
Network 916
15.421014070510864
Network 917
10.888303756713867
Network 918
12.720976829528809
Network 919
10.760118246078491
11.278723239898682
Network 921
10.713344097137451
Network 922
10.75288987159729
Network 923
11.81231689453125
Network 924
13.566024780273438
Network 925
11.789371013641357
Network 926
12.466037034988403
Network 927
11.483418226242065
Network 928
11.085766077041626
Network 929
11.488889932632446
Network 930
11.364448070526123
Network 931
10.578668117523193
Network 932
11.612886190414429
Network 933
10.39407205581665
Network 934
10.72121000289917
Network 935
10.531506061553955
Network 936
10.425315856933594
Network 937
11.183759212493896
Network 938
10.443299055099487
Network 939
10.559560775756836
10.67642617225647
Network 941
10.408780097961426
Network 942
10.477955102920532
Network 943
10.524627923965454
Network 944
10.407417058944702
Network 945
10.627549886703491
Network 946
10.444368124008179
Network 947
10.563290119171143
Network 948
10.382475852966309
Network 949
10.579866170883179
Network 950
10.463425636291504
Network 951
10.502445697784424
Network 952
10.444370985031128
Network 953
10.422518968582153
Network 954
10.398288249969482
Network 955
10.439695119857788
Network 956
10.455061197280884
Network 957
10.741245985031128
Network 958
10.686808109283447
Network 959
10.479788064956665
10.426027059555054
Network 961
10.217679023742676
Network 962
10.424928426742554
Network 963
10.543587923049927
Network 964
10.557687044143677
Network 965
10.38128399848938
Network 966
10.532027959823608
Network 967
10.725213050842285
Network 968
10.507293939590454
Network 969
10.608248233795166
Network 970
10.502996444702148
Network 971
10.594212293624878
Network 972
10.469829082489014
Network 973
10.47562289237976
Network 974
10.469002962112427
Network 975
10.384970903396606
Network 976
11.191427946090698
Network 977
10.661219835281372
Network 978
11.040591955184937
Network 979
10.522176027297974
10.65806794166565
Network 981
10.533432006835938
Network 982
15.258654832839966
Network 983
11.122680902481079
Network 984
12.522831916809082
Network 985
11.643926858901978
Network 986
14.099042892456055
Network 987
14.42283010482788
Network 988
10.732295036315918
Network 989
10.977344036102295
Network 990
10.729774236679077
Network 991
10.617187261581421
Network 992
10.567353963851929
Network 993
10.605227947235107
Network 994
10.65161681175232
Network 995
11.056798219680786
Network 996
10.479055643081665
Network 997
12.074808120727539
Network 998
13.744529962539673
Network 999
12.605647802352905

In [ ]:


In [ ]: