In [5]:
import tensorflow as tf
x = tf.constant([2,2,3],dtype=tf.float32)
y= tf.constant([9,5,6],dtype=tf.float32)
with tf.name_scope("mean_x"):
x_mean=0
y_mean=0
for i in range(3):
x_mean=tf.div(tf.add(x[i],x_mean),3)
y_mean=tf.div(tf.add(x[i],x_mean),3)
In [6]:
#variancex=pow((x[i]-meanx),2)+variancex
with tf.name_scope("variancex"):
variancex=0
for i in range(3):
a=tf.subtract(x[i],x_mean)
b=tf.pow(a,2)
variancex=tf.add(b,variancex)
In [7]:
#$$covariance = sum((x(i) - mean(x)) * (y(i) - mean(y)))$$
with tf.name_scope("covariance"):
covariancex=0
for i in range(3):
covariancex=tf.add(tf.multiply(tf.subtract(x[i],x_mean),tf.subtract(y[i],y_mean)),covariancex)
In [8]:
#$$c = covariance(x,y)/variance(x)$$
with tf.name_scope("c"):
c=tf.div(covariancex,variancex)
In [74]:
#$$m = mean(y) -c* mean(x)$$
with tf.name_scope("m"):
m=tf.subtract(y_mean,tf.multiply(c,x_mean))
with tf.Session() as sess:
writer = tf.summary.FileWriter("/tmp/tboard/output1", sess.graph)
print(sess.run(x_mean))
print(sess.run(y_mean))
print(sess.run(variancex))
print(sess.run(covariancex))
print(sess.run(c))
print(sess.run(m))
writer.close()
In [ ]: