In [45]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
In [46]:
dataset = pd.read_csv('Social_Network_Ads.csv')
In [47]:
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
In [48]:
from sklearn.model_selection import train_test_split
In [49]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
In [50]:
from sklearn.preprocessing import StandardScaler
In [51]:
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
In [52]:
from sklearn.svm import SVC
In [53]:
classifier = SVC(kernel='linear', random_state=0)
classifier.fit(X_train, y_train)
Out[53]:
In [54]:
y_pred = classifier.predict(X_test)
result = pd.DataFrame([y_test, y_pred]).transpose()
result.columns = ['observed', 'predicted']
result[result['observed'] != result['predicted']]
Out[54]:
In [55]:
from sklearn.metrics import confusion_matrix
In [56]:
confusion_matrix(y_test, y_pred)
Out[56]:
In [57]:
from matplotlib.colors import ListedColormap
In [58]:
def draw(X_set, y_set, title):
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01),
np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha=0.5, cmap=ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c=ListedColormap(('red', 'green'))(i), label=j)
plt.title(title)
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
In [59]:
draw(X_train, y_train, 'SVM (Training set)')
In [60]:
draw(X_test, y_test, 'SVM (Test set)')