In [38]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Data Preparation

Importing a dataset


In [39]:
dataset = pd.read_csv('Social_Network_Ads.csv')

In [40]:
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

Splitting the dataset into a Training set a Test set


In [41]:
from sklearn.model_selection import train_test_split

In [42]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

Feature Scaling


In [43]:
from sklearn.preprocessing import StandardScaler

In [44]:
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)


/usr/local/opt/pyenv/versions/3.6.0/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/utils/validation.py:429: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
  warnings.warn(msg, _DataConversionWarning)

Modeling

Fitting the Classifier to the Training set


In [45]:
from sklearn.neighbors import KNeighborsClassifier

In [46]:
classifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
classifier.fit(X_train, y_train)


Out[46]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=5, p=2,
           weights='uniform')

Predicting the Test set results


In [47]:
y_pred = classifier.predict(X_test)
result = pd.DataFrame([y_test, y_pred]).transpose()
result.columns = ['observed', 'predicted']
result[result['observed'] != result['predicted']]


Out[47]:
observed predicted
9 0 1
15 0 1
31 1 0
53 0 1
81 0 1
85 1 0
95 1 0

Making the Confusion Matrix


In [48]:
from sklearn.metrics import confusion_matrix

In [49]:
confusion_matrix(y_test, y_pred)


Out[49]:
array([[64,  4],
       [ 3, 29]])

Visualising results


In [50]:
from matplotlib.colors import ListedColormap

In [51]:
def draw(X_set, y_set, title):
    X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01),
                         np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha=0.5, cmap=ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c=ListedColormap(('red', 'green'))(i), label=j)
    plt.title(title)
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()

In [52]:
draw(X_train, y_train, 'K-NN (Train set)')



In [53]:
draw(X_test, y_test, 'K-NN (Train set)')