Tinanic Survival

  • Dataset has been obtained from kaggle.com

Data Analysis


In [1]:
import numpy as np
import pandas as pd

#load the files
train = pd.read_csv('input/train.csv')
test = pd.read_csv('input/test.csv')
data = pd.concat([train, test])

#size of training dataset
train_samples = train.shape[0]

#print some of them
data.head()


Out[1]:
Age Cabin Embarked Fare Name Parch PassengerId Pclass Sex SibSp Survived Ticket
0 22.0 NaN S 7.2500 Braund, Mr. Owen Harris 0 1 3 male 1 0.0 A/5 21171
1 38.0 C85 C 71.2833 Cumings, Mrs. John Bradley (Florence Briggs Th... 0 2 1 female 1 1.0 PC 17599
2 26.0 NaN S 7.9250 Heikkinen, Miss. Laina 0 3 3 female 0 1.0 STON/O2. 3101282
3 35.0 C123 S 53.1000 Futrelle, Mrs. Jacques Heath (Lily May Peel) 0 4 1 female 1 1.0 113803
4 35.0 NaN S 8.0500 Allen, Mr. William Henry 0 5 3 male 0 0.0 373450

In [2]:
#show the data types
data.info()


<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 417
Data columns (total 12 columns):
Age            1046 non-null float64
Cabin          295 non-null object
Embarked       1307 non-null object
Fare           1308 non-null float64
Name           1309 non-null object
Parch          1309 non-null int64
PassengerId    1309 non-null int64
Pclass         1309 non-null int64
Sex            1309 non-null object
SibSp          1309 non-null int64
Survived       891 non-null float64
Ticket         1309 non-null object
dtypes: float64(3), int64(4), object(5)
memory usage: 132.9+ KB

In [3]:
#show the distributions
data.describe()


Out[3]:
Age Fare Parch PassengerId Pclass SibSp Survived
count 1046.000000 1308.000000 1309.000000 1309.000000 1309.000000 1309.000000 891.000000
mean 29.881138 33.295479 0.385027 655.000000 2.294882 0.498854 0.383838
std 14.413493 51.758668 0.865560 378.020061 0.837836 1.041658 0.486592
min 0.170000 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000
25% 21.000000 7.895800 0.000000 328.000000 2.000000 0.000000 0.000000
50% 28.000000 14.454200 0.000000 655.000000 3.000000 0.000000 0.000000
75% 39.000000 31.275000 0.000000 982.000000 3.000000 1.000000 1.000000
max 80.000000 512.329200 9.000000 1309.000000 3.000000 8.000000 1.000000

In [4]:
#show categorical
data.describe(include=['O'])


Out[4]:
Cabin Embarked Name Sex Ticket
count 295 1307 1309 1309 1309
unique 186 3 1307 2 929
top C23 C25 C27 S Connolly, Miss. Kate male CA. 2343
freq 6 914 2 843 11

In [5]:
#showing survival percentiles
train['Survived'].quantile([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])


Out[5]:
0.0    0.0
0.1    0.0
0.2    0.0
0.3    0.0
0.4    0.0
0.5    0.0
0.6    0.0
0.7    1.0
0.8    1.0
0.9    1.0
1.0    1.0
Name: Survived, dtype: float64

In [6]:
#showing fare percentiles
data['Fare'].quantile([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])


Out[6]:
0.0      0.00000
0.1      7.56750
0.2      7.85420
0.3      8.05000
0.4     10.50000
0.5     14.45420
0.6     21.67920
0.7     26.95500
0.8     41.57920
0.9     78.05082
1.0    512.32920
Name: Fare, dtype: float64

Data Engineering

Dropping


In [7]:
#Dropping useless features
data = data.drop(['PassengerId', 'Name', 'Embarked', 'Ticket'], axis=1)
data.head(10)


Out[7]:
Age Cabin Fare Parch Pclass Sex SibSp Survived
0 22.0 NaN 7.2500 0 3 male 1 0.0
1 38.0 C85 71.2833 0 1 female 1 1.0
2 26.0 NaN 7.9250 0 3 female 0 1.0
3 35.0 C123 53.1000 0 1 female 1 1.0
4 35.0 NaN 8.0500 0 3 male 0 0.0
5 NaN NaN 8.4583 0 3 male 0 0.0
6 54.0 E46 51.8625 0 1 male 0 0.0
7 2.0 NaN 21.0750 1 3 male 3 0.0
8 27.0 NaN 11.1333 2 3 female 0 1.0
9 14.0 NaN 30.0708 0 2 female 1 1.0

Family size


In [8]:
#New column to know if the passenger has family on board
def family(size):
    size +=1
    if size == 1:
        return "alone"
    elif size < 5:
        return "medium"
    else:
        return "large"

data['FamilySize'] = (data['SibSp']+data['Parch']).apply(family)
data = data.drop(['SibSp', 'Parch'], axis=1)

data.head()


Out[8]:
Age Cabin Fare Pclass Sex Survived FamilySize
0 22.0 NaN 7.2500 3 male 0.0 medium
1 38.0 C85 71.2833 1 female 1.0 medium
2 26.0 NaN 7.9250 3 female 1.0 alone
3 35.0 C123 53.1000 1 female 1.0 medium
4 35.0 NaN 8.0500 3 male 0.0 alone

Age Range


In [9]:
#cond = (data['Survived']==1) & (data['Sex']=='female') & (data['Pclass']==1)
cond = (data['Sex']=='female') & (data['Pclass']==3)
#datamean = data[cond].groupby(['Survived','Sex','Pclass'])['Age'].mean()
#print(datamean.mean())
#data.groupby(['Survived','Sex','Pclass'])['Age'].mean()
data.groupby(['Survived','Sex','Pclass'])['Age'].mean()
data[cond].groupby(['Sex','Pclass'])['Age'].mean()


Out[9]:
Sex     Pclass
female  3         22.185329
Name: Age, dtype: float64

In [10]:
def getAge(row):
    surv = row.Survived
    sex = row.Sex
    pclass = row.Pclass
    
    if surv==0 or surv==1:
        condition = (data['Survived']==surv) & (data['Sex']==sex) & (data['Pclass']==pclass)
        df_mean = data[condition].groupby(['Survived','Sex','Pclass'])['Age'].mean()
    else:
        condition = (data['Sex']==sex) & (data['Pclass']==pclass)
        df_mean = data[condition].groupby(['Sex','Pclass'])['Age'].mean()
    
    print("srv: {}, sex: {}, class: {} -> mean: {}".format(surv, sex, pclass, df_mean.mean()))
    return df_mean.mean()
    
data['Age'] = data['Age'].fillna(data.apply(getAge, axis=1))


srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: female, class: 2 -> mean: 36.0
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 1 -> mean: 25.666666666666668
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: female, class: 2 -> mean: 36.0
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 1 -> mean: 25.666666666666668
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 2 -> mean: 36.0
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 2 -> mean: 36.0
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 1 -> mean: 25.666666666666668
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 2 -> mean: 36.0
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: male, class: 2 -> mean: 16.022
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 2 -> mean: 36.0
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: male, class: 3 -> mean: 22.274210526315787
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: male, class: 1 -> mean: 44.58196721311475
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 1.0, sex: female, class: 3 -> mean: 19.329787234042552
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 1.0, sex: female, class: 2 -> mean: 28.080882352941178
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 0.0, sex: male, class: 2 -> mean: 33.36904761904762
srv: 1.0, sex: female, class: 1 -> mean: 34.9390243902439
srv: 0.0, sex: female, class: 3 -> mean: 23.818181818181817
srv: 1.0, sex: male, class: 1 -> mean: 36.248000000000005
srv: 0.0, sex: male, class: 3 -> mean: 27.25581395348837
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 2 -> mean: 27.499223300970876
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 2 -> mean: 30.815379746835443
srv: nan, sex: male, class: 1 -> mean: 41.02927152317881
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: female, class: 3 -> mean: 22.185328947368422
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: female, class: 1 -> mean: 37.037593984962406
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187
srv: nan, sex: male, class: 3 -> mean: 25.962263610315187

In [11]:
len(data['Age']) - data['Age'].count()


Out[11]:
0

Cabin Processing


In [12]:
#Get information from Cabin
def getCabinLetter(cabin):
    letter = "U"
    if isinstance(cabin,str) and cabin != "":        
        letter = cabin.split()[0][0]
    return letter

def getCabinPos(cabin):
    num = 0
    if isinstance(cabin,str) and cabin != "":        
        snum = cabin.split()[0][1:]
        num = int(snum) if snum else 0
    return num

def processCabin(df):
    df['CabinLetter'] = df['Cabin'].apply(getCabinLetter)
    #df['CabinPos'] = df['Cabin'].apply(getCabinPos)

processCabin(data)
#print(data[['Cabin','CabinLetter','CabinPos']].head(10))
print(data[['Cabin','CabinLetter']].head(10))
data = data.drop('Cabin', axis=1)


  Cabin CabinLetter
0   NaN           U
1   C85           C
2   NaN           U
3  C123           C
4   NaN           U
5   NaN           U
6   E46           E
7   NaN           U
8   NaN           U
9   NaN           U

In [13]:
# Preprocess CabinLetter 'U'
l='A'
print(data[data['CabinLetter'] == l]['Fare'].min())
print(data[data['CabinLetter'] == l]['Fare'].max())
print(data[data['CabinLetter'] == l]['Fare'].mean())
data.groupby(['CabinLetter'])['Fare'].describe()


0.0
81.8583
41.2443136364
Out[13]:
count mean std min 25% 50% 75% max
CabinLetter
A 22.0 41.244314 20.140358 0.0000 30.1250 35.0771 50.37185 81.8583
B 65.0 122.383078 115.312993 0.0000 57.0000 82.2667 146.52080 512.3292
C 94.0 107.926598 72.912034 25.7000 52.0000 86.2896 151.55000 263.0000
D 46.0 53.007339 28.126283 12.8750 27.7208 52.5542 76.72920 113.2750
E 41.0 54.564634 37.738225 8.0500 26.2875 53.1000 79.65000 134.5000
F 21.0 18.079367 12.215124 7.2292 7.6500 13.0000 26.00000 39.0000
G 5.0 14.205000 3.416419 10.4625 10.4625 16.7000 16.70000 16.7000
T 1.0 35.500000 NaN 35.5000 35.5000 35.5000 35.50000 35.5000
U 1013.0 19.132707 27.489412 0.0000 7.8542 10.5000 23.00000 512.3292

Categorical Features


In [14]:
#Transform categorical to dummies
data = pd.get_dummies(data)

Filling NaN


In [15]:
#finding NaN
data.columns[data.isnull().any()].tolist()


Out[15]:
['Fare', 'Survived']

In [16]:
#Replace the NaN value with the mean (careful at Survided from test -> data[891:])
#data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Fare'].fillna(data['Fare'].mean(), inplace=True)

data.columns[data.isnull().any()].tolist()


Out[16]:
['Survived']

Normalizing


In [17]:
data.describe().T


Out[17]:
count mean std min 25% 50% 75% max
Age 1309.0 29.404170 13.223943 0.17 22.0000 27.255814 36.000 80.0000
Fare 1309.0 33.295479 51.738879 0.00 7.8958 14.454200 31.275 512.3292
Pclass 1309.0 2.294882 0.837836 1.00 2.0000 3.000000 3.000 3.0000
Survived 891.0 0.383838 0.486592 0.00 0.0000 0.000000 1.000 1.0000
Sex_female 1309.0 0.355997 0.478997 0.00 0.0000 0.000000 1.000 1.0000
Sex_male 1309.0 0.644003 0.478997 0.00 0.0000 1.000000 1.000 1.0000
FamilySize_alone 1309.0 0.603514 0.489354 0.00 0.0000 1.000000 1.000 1.0000
FamilySize_large 1309.0 0.062643 0.242413 0.00 0.0000 0.000000 0.000 1.0000
FamilySize_medium 1309.0 0.333843 0.471765 0.00 0.0000 0.000000 1.000 1.0000
CabinLetter_A 1309.0 0.016807 0.128596 0.00 0.0000 0.000000 0.000 1.0000
CabinLetter_B 1309.0 0.049656 0.217317 0.00 0.0000 0.000000 0.000 1.0000
CabinLetter_C 1309.0 0.071811 0.258273 0.00 0.0000 0.000000 0.000 1.0000
CabinLetter_D 1309.0 0.035141 0.184207 0.00 0.0000 0.000000 0.000 1.0000
CabinLetter_E 1309.0 0.031322 0.174252 0.00 0.0000 0.000000 0.000 1.0000
CabinLetter_F 1309.0 0.016043 0.125688 0.00 0.0000 0.000000 0.000 1.0000
CabinLetter_G 1309.0 0.003820 0.061709 0.00 0.0000 0.000000 0.000 1.0000
CabinLetter_T 1309.0 0.000764 0.027639 0.00 0.0000 0.000000 0.000 1.0000
CabinLetter_U 1309.0 0.774637 0.417981 0.00 1.0000 1.000000 1.000 1.0000

In [18]:
import matplotlib.pyplot as plt

#data[['Pclass','Age','Fare','CabinPos']].head(15).plot()
data[['Pclass','Age','Fare']].head(15).plot()
plt.show()



In [19]:
#Squeeze the data to [0,1]
from sklearn import preprocessing

scaler = preprocessing.MinMaxScaler()
#data[['Age','Fare','Pclass','CabinPos']] = scaler.fit_transform(data[['Age','Fare','Pclass','CabinPos']])
data[['Age','Fare','Pclass']] = scaler.fit_transform(data[['Age','Fare','Pclass']])
print("Train shape: {}".format(data.shape))

#data[['Pclass','Age','Fare','CabinPos']].head(15).plot()
data[['Pclass','Age','Fare']].head(15).plot()
plt.show()
data.describe().T


Train shape: (1309, 18)
Out[19]:
count mean std min 25% 50% 75% max
Age 1309.0 0.366205 0.165651 0.0 0.273456 0.339294 0.448829 1.0
Fare 1309.0 0.064988 0.100988 0.0 0.015412 0.028213 0.061045 1.0
Pclass 1309.0 0.647441 0.418918 0.0 0.500000 1.000000 1.000000 1.0
Survived 891.0 0.383838 0.486592 0.0 0.000000 0.000000 1.000000 1.0
Sex_female 1309.0 0.355997 0.478997 0.0 0.000000 0.000000 1.000000 1.0
Sex_male 1309.0 0.644003 0.478997 0.0 0.000000 1.000000 1.000000 1.0
FamilySize_alone 1309.0 0.603514 0.489354 0.0 0.000000 1.000000 1.000000 1.0
FamilySize_large 1309.0 0.062643 0.242413 0.0 0.000000 0.000000 0.000000 1.0
FamilySize_medium 1309.0 0.333843 0.471765 0.0 0.000000 0.000000 1.000000 1.0
CabinLetter_A 1309.0 0.016807 0.128596 0.0 0.000000 0.000000 0.000000 1.0
CabinLetter_B 1309.0 0.049656 0.217317 0.0 0.000000 0.000000 0.000000 1.0
CabinLetter_C 1309.0 0.071811 0.258273 0.0 0.000000 0.000000 0.000000 1.0
CabinLetter_D 1309.0 0.035141 0.184207 0.0 0.000000 0.000000 0.000000 1.0
CabinLetter_E 1309.0 0.031322 0.174252 0.0 0.000000 0.000000 0.000000 1.0
CabinLetter_F 1309.0 0.016043 0.125688 0.0 0.000000 0.000000 0.000000 1.0
CabinLetter_G 1309.0 0.003820 0.061709 0.0 0.000000 0.000000 0.000000 1.0
CabinLetter_T 1309.0 0.000764 0.027639 0.0 0.000000 0.000000 0.000000 1.0
CabinLetter_U 1309.0 0.774637 0.417981 0.0 1.000000 1.000000 1.000000 1.0

Splitting the data to train and test


In [20]:
y = np.array(data['Survived'])
X = np.array(data.drop('Survived', axis=1))

#split by idx
idx = train_samples
X_train, X_test = X[:idx], X[idx:]
y_train, y_test = y[:idx], y[idx:]

print("Shape train: {}".format(X_train.shape))
print("Shape test: {}".format(X_test.shape))
print(y_train[0:1])
print(X_train[0:1].tolist())


Shape train: (891, 17)
Shape test: (418, 17)
[ 0.]
[[0.2734560942001754, 0.014151057562208049, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]

In [21]:
from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2)
y_val = np.reshape(y_val, [-1,1])
y_train = np.reshape(y_train, [-1,1])

print("Shape X train: {}".format(X_train.shape))
print("Shape y train: {}".format(y_train.shape))
print("Shape X validation: {}".format(X_val.shape))
print("Shape y validation: {}".format(y_val.shape))


Shape X train: (712, 17)
Shape y train: (712, 1)
Shape X validation: (179, 17)
Shape y validation: (179, 1)

Neural Network (model)

Tensorflow

(Not converve very well, by now)


In [22]:
import tensorflow as tf

inputs_len = X_train.shape[1]
outputs_len = y_train.shape[1]

inputs = tf.placeholder(tf.float32, [None, inputs_len])
outputs = tf.placeholder(tf.int32, [None, outputs_len])


def nn_layer(inputs_, num_outputs):
    weights_init = tf.truncated_normal_initializer(stddev=1/np.sqrt(inputs_len), seed=42)
    bias_init = tf.truncated_normal_initializer(stddev=1/np.sqrt(num_outputs), seed=42)

    return tf.layers.dense(inputs_,
                             num_outputs, 
                             activation=tf.nn.sigmoid, 
                             kernel_initializer=weights_init,
                             bias_initializer=bias_init)

    
logits = nn_layer(inputs, outputs_len)

cost = tf.reduce_mean(tf.square(tf.to_float(outputs) - logits))
optimizer = tf.train.AdamOptimizer(0.01).minimize(cost)

correct_predition = tf.equal(outputs, tf.cast(logits, tf.int32))
accuracy = tf.reduce_mean(tf.cast(correct_predition, tf.float32))

##
epochs = 500
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    
    for epoch in range(epochs):
        t_acc, _, loss = sess.run([accuracy, optimizer, cost], feed_dict={inputs: X_train, outputs: y_train})
        
        if epoch % 100 == 0:
            print("Epoch({:2}) Training Loss: {:.5f}".format(epoch, loss))   
        
    v_acc = sess.run(accuracy, feed_dict={inputs: X_val, outputs: y_val})    
    print("Training accuracy: {:.5f}  Validation Accuracy: {}".format(t_acc, v_acc))


Epoch( 0) Training Loss: 0.21369
Epoch(100) Training Loss: 0.13642
Epoch(200) Training Loss: 0.12724
Epoch(300) Training Loss: 0.12499
Epoch(400) Training Loss: 0.12402
Training accuracy: 0.61798  Validation Accuracy: 0.6089385747909546

Scikit-learn

Multi Layer Perceptron Classifier


In [23]:
from sklearn.neural_network import MLPClassifier

clf = MLPClassifier(activation='logistic',
                    solver='lbfgs',
                    learning_rate_init=1e-3, 
                    learning_rate='adaptive',
                    shuffle=True,
                    #batch_size=100,
                    max_iter=5000,
                    tol=1e-5,
                    hidden_layer_sizes=(8,8),
                    #warm_start=True,
                    random_state=42,
                    verbose=True)

clf.fit(X_train, y_train.reshape(-1))


#Scores
print("Training score: {}".format(clf.score(X_train, y_train)))
print("Validation score: {}".format(clf.score(X_val, y_val)))


Training score: 0.9101123595505618
Validation score: 0.776536312849162

StratifiedKFold training set


In [24]:
from sklearn.model_selection import StratifiedKFold

y = np.array(data['Survived'])
X = np.array(data.drop('Survived', axis=1))

#split by idx
#idx = firstNan
idx = train_samples
X_train, X_test = X[:idx], X[idx:]
y_train, y_test = y[:idx], y[idx:]

print("Shape train: {}".format(X_train.shape))
print("Shape test: {}".format(X_test.shape))
print(y_train[0:1])
print(X_train[0:1].tolist())

kf = StratifiedKFold(n_splits=3, random_state=42, shuffle=True)
print(kf)


Shape train: (891, 17)
Shape test: (418, 17)
[ 0.]
[[0.2734560942001754, 0.014151057562208049, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]
StratifiedKFold(n_splits=3, random_state=42, shuffle=True)

Ranfom Forest


In [25]:
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score

rf = RandomForestClassifier(warm_start=True,
                            random_state = 42)

estimators = 300
epoch = 1
for train_idx, val_idx in kf.split(X_train, y_train):
    X_t, X_v = X_train[train_idx], X_train[val_idx]
    y_t, y_v = y_train[train_idx], y_train[val_idx]
    
    rf.set_params(n_estimators=epoch*estimators)
    rf.fit(X_t, y_t.reshape(-1))
    epoch +=1

    scores = cross_val_score(rf, X_v, y_v.reshape(-1))
    print("{}".format(scores))

#Scores
print("Training score: {}".format(rf.score(X_train, y_train)))
print("Validation score: {}".format(rf.score(X_val, y_val)))


[ 0.78787879  0.80808081  0.81818182]
[ 0.82828283  0.87878788  0.80808081]
[ 0.74747475  0.75757576  0.87878788]
Training score: 0.9539842873176206
Validation score: 0.9329608938547486

Voting Ensemble


In [26]:
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

clf1 = LogisticRegression(random_state=42, warm_start=True)
clf2 = RandomForestClassifier(random_state=42, warm_start=True)
clf3 = GaussianNB()

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)],
                        voting='soft')

estimators = 10
epoch = 1
for train_idx, val_idx in kf.split(X_train, y_train):
    X_t, X_v = X_train[train_idx], X_train[val_idx]
    y_t, y_v = y_train[train_idx], y_train[val_idx]
    
    clf2.set_params(n_estimators=estimators*epoch)
    epoch += 1
    # predict class probabilities for all classifiers
    probas = [c.fit(X_train, y_train.reshape(-1)).predict_proba(X_test) for c in (clf1, clf2, eclf)]

sample = 13
class1_1 = [pr[sample, 0] for pr in probas]
class2_1 = [pr[sample, 1] for pr in probas]
print("Probabilities not survived (0): {}".format(class1_1))
print("Probabilities survived (1): {}".format(class2_1))
print("Predition: {}".format(eclf.predict(X_test)[sample]))


Probabilities not survived (0): [0.91104658168498021, 0.96666666666666667, 0.93885662417582338]
Probabilities survived (1): [0.088953418315019767, 0.033333333333333333, 0.061143375824176546]
Predition: 0.0

Metrics (scikit-learn)


In [27]:
from sklearn.metrics import classification_report,confusion_matrix

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.3)
y_val = np.reshape(y_val, [-1,1])

predictions = rf.predict(X_val)
cm = confusion_matrix(y_val, predictions)
print(cm)
plt.matshow(cm)
plt.colorbar()
ax = plt.gca()
ax.set_xlabel('Predicted')
ax.set_ylabel('True')

plt.show()


[[162   4]
 [  8  94]]

In [28]:
print(classification_report(y_val, predictions))


             precision    recall  f1-score   support

        0.0       0.95      0.98      0.96       166
        1.0       0.96      0.92      0.94       102

avg / total       0.96      0.96      0.96       268

Normal Equation

The number of samples in the dataset is relatively small so we can use the normal equation formula.

$$\Theta = (X^TX)^{-1}X^Ty$$

In [35]:
X = pd.read_csv('input/train.csv')
X.fillna(X.mean(), inplace=True)
X= X.drop(['Name','Ticket','Cabin'], axis=1)
X = pd.get_dummies(X)
#
y = np.array(X['Survived'])
X = np.array(X.drop('Survived', axis=1))
#
XtX = X.T.dot(X)
XtX_inv = np.linalg.inv(XtX)
XtY = X.T.dot(y)
theta = XtX_inv.dot(XtY)

#validation predictions
predictions = X.dot(theta)
print(classification_report(y, predictions.astype(int)))


             precision    recall  f1-score   support

          0       0.64      1.00      0.78       549
          1       0.97      0.08      0.16       342

avg / total       0.76      0.65      0.54       891


In [34]:
#test predictions
test = pd.read_csv('input/test.csv')
test.fillna(X.mean(), inplace=True)
test = test.drop(['Name','Ticket','Cabin'], axis=1)
test = pd.get_dummies(test)

predictions = test.dot(theta)
round(abs(predictions));

#print
passengerId = 892
print("PassengerId,Survived")
for i in range(len(predictions)):
    print("{},{}".format(passengerId, (int)(predictions[i])))
    passengerId += 1


PassengerId,Survived
892,0
893,0
894,0
895,0
896,0
897,0
898,0
899,0
900,0
901,0
902,0
903,0
904,0
905,0
906,0
907,0
908,0
909,0
910,0
911,0
912,0
913,0
914,0
915,0
916,0
917,0
918,1
919,0
920,0
921,0
922,0
923,0
924,0
925,0
926,0
927,0
928,0
929,0
930,0
931,0
932,0
933,0
934,0
935,0
936,0
937,0
938,0
939,0
940,0
941,0
942,0
943,0
944,0
945,0
946,0
947,0
948,0
949,0
950,0
951,1
952,0
953,0
954,0
955,0
956,0
957,0
958,0
959,0
960,0
961,0
962,0
963,0
964,0
965,0
966,1
967,0
968,0
969,0
970,0
971,0
972,0
973,0
974,0
975,0
976,0
977,0
978,0
979,0
980,0
981,0
982,0
983,0
984,0
985,0
986,0
987,0
988,0
989,0
990,0
991,0
992,0
993,0
994,0
995,0
996,0
997,0
998,0
999,0
1000,0
1001,0
1002,0
1003,0
1004,0
1005,0
1006,0
1007,0
1008,0
1009,0
1010,0
1011,0
1012,0
1013,0
1014,0
1015,0
1016,0
1017,0
1018,0
1019,0
1020,0
1021,0
1022,0
1023,0
1024,0
1025,0
1026,0
1027,0
1028,0
1029,0
1030,0
1031,0
1032,0
1033,0
1034,0
1035,0
1036,0
1037,0
1038,0
1039,0
1040,0
1041,0
1042,1
1043,0
1044,0
1045,0
1046,0
1047,0
1048,1
1049,0
1050,0
1051,0
1052,0
1053,0
1054,0
1055,0
1056,0
1057,0
1058,0
1059,0
1060,0
1061,0
1062,0
1063,0
1064,0
1065,0
1066,0
1067,0
1068,0
1069,0
1070,0
1071,0
1072,0
1073,0
1074,0
1075,0
1076,1
1077,0
1078,0
1079,0
1080,0
1081,0
1082,0
1083,0
1084,0
1085,0
1086,0
1087,0
1088,0
1089,0
1090,0
1091,0
1092,0
1093,0
1094,0
1095,0
1096,0
1097,0
1098,0
1099,0
1100,0
1101,0
1102,0
1103,0
1104,0
1105,0
1106,0
1107,0
1108,0
1109,0
1110,0
1111,0
1112,0
1113,0
1114,0
1115,0
1116,0
1117,0
1118,0
1119,0
1120,0
1121,0
1122,0
1123,1
1124,0
1125,0
1126,0
1127,0
1128,0
1129,0
1130,0
1131,0
1132,0
1133,0
1134,0
1135,0
1136,0
1137,0
1138,0
1139,0
1140,0
1141,0
1142,0
1143,0
1144,0
1145,0
1146,0
1147,0
1148,0
1149,0
1150,0
1151,0
1152,0
1153,0
1154,0
1155,0
1156,0
1157,0
1158,0
1159,0
1160,0
1161,0
1162,0
1163,0
1164,1
1165,0
1166,0
1167,0
1168,0
1169,0
1170,0
1171,0
1172,0
1173,0
1174,0
1175,0
1176,0
1177,0
1178,0
1179,0
1180,0
1181,0
1182,0
1183,0
1184,0
1185,0
1186,0
1187,0
1188,0
1189,0
1190,0
1191,0
1192,0
1193,0
1194,0
1195,0
1196,0
1197,0
1198,0
1199,0
1200,0
1201,0
1202,0
1203,0
1204,0
1205,0
1206,0
1207,0
1208,0
1209,0
1210,0
1211,0
1212,0
1213,0
1214,0
1215,0
1216,0
1217,0
1218,0
1219,0
1220,0
1221,0
1222,0
1223,0
1224,0
1225,0
1226,0
1227,0
1228,0
1229,0
1230,0
1231,0
1232,0
1233,0
1234,0
1235,0
1236,0
1237,0
1238,0
1239,0
1240,0
1241,0
1242,0
1243,0
1244,0
1245,0
1246,0
1247,0
1248,0
1249,0
1250,0
1251,0
1252,0
1253,0
1254,0
1255,0
1256,1
1257,0
1258,0
1259,0
1260,0
1261,0
1262,0
1263,1
1264,0
1265,0
1266,0
1267,0
1268,0
1269,0
1270,0
1271,0
1272,0
1273,0
1274,0
1275,0
1276,0
1277,0
1278,0
1279,0
1280,0
1281,0
1282,0
1283,0
1284,0
1285,0
1286,0
1287,0
1288,0
1289,0
1290,0
1291,0
1292,0
1293,0
1294,1
1295,0
1296,0
1297,0
1298,0
1299,0
1300,0
1301,0
1302,0
1303,0
1304,0
1305,0
1306,0
1307,0
1308,0
1309,0

Get Predictions


In [166]:
predictions = eclf.predict(X_test)

passengerId = 892
print("PassengerId,Survived")
for i in range(len(X_test)):
    print("{},{}".format(passengerId, (int)(predictions[i])))
    passengerId += 1


PassengerId,Survived
892,0
893,0
894,0
895,0
896,1
897,0
898,0
899,0
900,1
901,0
902,0
903,0
904,1
905,0
906,1
907,1
908,0
909,0
910,0
911,0
912,0
913,0
914,1
915,0
916,1
917,0
918,1
919,0
920,0
921,0
922,0
923,0
924,1
925,1
926,1
927,0
928,1
929,0
930,0
931,0
932,0
933,0
934,0
935,1
936,1
937,0
938,0
939,0
940,1
941,1
942,1
943,0
944,1
945,1
946,0
947,0
948,0
949,0
950,0
951,1
952,0
953,0
954,0
955,1
956,0
957,1
958,1
959,0
960,0
961,1
962,0
963,0
964,1
965,1
966,1
967,0
968,0
969,1
970,0
971,0
972,1
973,0
974,0
975,0
976,0
977,0
978,1
979,1
980,1
981,1
982,0
983,0
984,1
985,0
986,0
987,0
988,1
989,0
990,1
991,0
992,1
993,0
994,0
995,0
996,1
997,0
998,0
999,0
1000,0
1001,0
1002,0
1003,1
1004,1
1005,1
1006,1
1007,0
1008,0
1009,1
1010,0
1011,1
1012,1
1013,0
1014,1
1015,0
1016,0
1017,1
1018,0
1019,1
1020,0
1021,0
1022,0
1023,0
1024,0
1025,0
1026,0
1027,0
1028,0
1029,0
1030,0
1031,0
1032,0
1033,1
1034,0
1035,0
1036,0
1037,0
1038,0
1039,0
1040,0
1041,0
1042,1
1043,0
1044,0
1045,1
1046,0
1047,0
1048,1
1049,0
1050,0
1051,0
1052,1
1053,1
1054,1
1055,0
1056,0
1057,1
1058,0
1059,0
1060,1
1061,0
1062,0
1063,0
1064,0
1065,0
1066,0
1067,1
1068,1
1069,0
1070,1
1071,1
1072,0
1073,0
1074,1
1075,0
1076,1
1077,0
1078,1
1079,0
1080,0
1081,0
1082,0
1083,0
1084,1
1085,0
1086,1
1087,0
1088,1
1089,0
1090,0
1091,1
1092,0
1093,1
1094,0
1095,1
1096,0
1097,0
1098,0
1099,0
1100,1
1101,0
1102,0
1103,0
1104,0
1105,1
1106,0
1107,0
1108,1
1109,0
1110,1
1111,0
1112,1
1113,0
1114,1
1115,0
1116,1
1117,0
1118,0
1119,1
1120,0
1121,0
1122,0
1123,1
1124,0
1125,0
1126,0
1127,0
1128,0
1129,0
1130,1
1131,1
1132,1
1133,1
1134,0
1135,0
1136,0
1137,0
1138,1
1139,0
1140,1
1141,0
1142,1
1143,0
1144,1
1145,0
1146,0
1147,0
1148,0
1149,0
1150,1
1151,0
1152,0
1153,0
1154,1
1155,1
1156,0
1157,0
1158,0
1159,0
1160,1
1161,0
1162,0
1163,0
1164,1
1165,1
1166,0
1167,1
1168,0
1169,0
1170,0
1171,0
1172,0
1173,1
1174,1
1175,0
1176,1
1177,0
1178,0
1179,0
1180,0
1181,0
1182,0
1183,0
1184,0
1185,0
1186,0
1187,0
1188,1
1189,0
1190,0
1191,0
1192,0
1193,0
1194,0
1195,0
1196,1
1197,1
1198,1
1199,1
1200,0
1201,0
1202,0
1203,0
1204,0
1205,0
1206,1
1207,1
1208,0
1209,0
1210,0
1211,0
1212,0
1213,0
1214,0
1215,1
1216,1
1217,0
1218,1
1219,0
1220,0
1221,0
1222,1
1223,0
1224,0
1225,1
1226,0
1227,0
1228,0
1229,0
1230,0
1231,0
1232,0
1233,0
1234,0
1235,1
1236,0
1237,1
1238,0
1239,0
1240,0
1241,1
1242,1
1243,0
1244,0
1245,0
1246,1
1247,0
1248,1
1249,0
1250,0
1251,0
1252,0
1253,1
1254,1
1255,0
1256,1
1257,0
1258,0
1259,0
1260,1
1261,0
1262,0
1263,1
1264,0
1265,0
1266,1
1267,1
1268,0
1269,0
1270,0
1271,0
1272,0
1273,0
1274,0
1275,1
1276,0
1277,1
1278,0
1279,0
1280,0
1281,0
1282,0
1283,1
1284,0
1285,0
1286,0
1287,1
1288,0
1289,1
1290,0
1291,0
1292,1
1293,0
1294,1
1295,0
1296,0
1297,0
1298,0
1299,0
1300,1
1301,1
1302,1
1303,1
1304,0
1305,0
1306,1
1307,0
1308,0
1309,0

In [ ]: