In [1]:
%matplotlib qt
import mia
import pandas as pd
import numpy as np
import re
import random
import matplotlib.pyplot as plt
from pandas.tools import plotting

In [9]:
batch1 = pd.DataFrame.from_csv('/Volumes/Seagate/2015-03-26/batch1_blobs.csv')
batch2 = pd.DataFrame.from_csv('/Volumes/Seagate/2015-03-26/batch2_blobs.csv')

hologic = pd.concat([batch1, batch2])
hologic.index = hologic.img_name
hologic.head()


Out[9]:
x y radius img_name
img_name
p214-010-60001-cl.png 1842 546 128.000000 p214-010-60001-cl.png
p214-010-60001-cl.png 1482 424 128.000000 p214-010-60001-cl.png
p214-010-60001-cl.png 1355 386 128.000000 p214-010-60001-cl.png
p214-010-60001-cl.png 2072 658 45.254834 p214-010-60001-cl.png
p214-010-60001-cl.png 1955 737 45.254834 p214-010-60001-cl.png

In [10]:
hologic.drop('img_name', axis=1, inplace=True)

In [8]:
hologic_meta_path = '/Volumes/Seagate/2015-03-26/BIRADS.csv'
hologic_meta = mia.analysis.create_hologic_meta_data(hologic, hologic_meta_path)
hologic_meta.head()


Out[8]:
patient_id side view img_name BIRADS img_number
img_name
p214-010-60001-cl.png 21401060001 c l p214-010-60001-cl.png 3 1
p214-010-60001-cl.png 21401060001 c l p214-010-60001-cl.png 3 1
p214-010-60001-cl.png 21401060001 c l p214-010-60001-cl.png 3 1
p214-010-60001-cl.png 21401060001 c l p214-010-60001-cl.png 3 1
p214-010-60001-cl.png 21401060001 c l p214-010-60001-cl.png 3 1

In [11]:
flt = hologic['radius']>30.0

mia.plotting.plot_scatter_3d(hologic[flt], hologic.columns, hologic_meta[flt].BIRADS)

In [ ]:
mapping = mia.analysis.tSNE(hologic[flt], verbose=2)


[t-SNE] Computing pairwise distances...
[t-SNE] Computed conditional probabilities for sample 1000 / 9263
[t-SNE] Computed conditional probabilities for sample 2000 / 9263
[t-SNE] Computed conditional probabilities for sample 3000 / 9263
[t-SNE] Computed conditional probabilities for sample 4000 / 9263
[t-SNE] Computed conditional probabilities for sample 5000 / 9263
[t-SNE] Computed conditional probabilities for sample 6000 / 9263
[t-SNE] Computed conditional probabilities for sample 7000 / 9263
[t-SNE] Computed conditional probabilities for sample 8000 / 9263
[t-SNE] Computed conditional probabilities for sample 9000 / 9263
[t-SNE] Computed conditional probabilities for sample 9263 / 9263