In [3]:
from eval_model import NDCGEvaluator, NDCG10Evaluator
import numpy as np
In [56]:
all_rows1 = []
for i in range(1000):
user = (i * np.ones(50, dtype=np.int)).tolist()
rating = np.random.randint(1, 6, 50).tolist()
prediction = np.random.randint(1, 6, 50).tolist()
all_rows1 = all_rows1 + list(zip(user, rating, prediction))
# print(all_rows1)
# print(type(all_rows1[0][2]))
rand_df1 = spark.createDataFrame(all_rows1, ['user', 'rating', 'prediction'])
rand_df1.printSchema()
rand_df1.show()
In [57]:
evaluator = NDCG10Evaluator()
1 - evaluator.evaluate(rand_df1)
Out[57]:
In [ ]: