Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7fa20c0cacf8>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7fa1f38d4da0>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    inputs_real   = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real')
    inputs_z      = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    learning_rate = tf.placeholder(tf.float32, name='learning_rate')

    return inputs_real, inputs_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

In [6]:
def lrelu(x, alpha=0.1, name='leaky_relu'):
    return tf.maximum(x, alpha * x, name=name)

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [7]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    with tf.variable_scope('discriminator', reuse=reuse):

        hidden = tf.layers.conv2d(images, 64, 5, strides=2, padding="same")
        hidden = lrelu(hidden)
        
        hidden = tf.layers.conv2d(hidden, 128, 5, strides=2, padding="same")
        hidden = tf.layers.batch_normalization(hidden, training=True)
        hidden = lrelu(hidden)
        
        hidden = tf.layers.conv2d(hidden, 256, 5, strides=1, padding="same")
        hidden = tf.layers.batch_normalization(hidden, training=True)
        hidden = lrelu(hidden)
        
        
        hidden = tf.contrib.layers.flatten(hidden)
        hidden = tf.layers.dense(hidden,1)
        out = tf.sigmoid(hidden)        

    return out, hidden


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [8]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    
    with tf.variable_scope('generator', reuse = (not is_train)):
        
        hidden = tf.layers.dense(z, 7*7*1024)
        
        hidden = tf.reshape(hidden, (-1, 7, 7, 1024))
        
        hidden = lrelu(hidden)
        
        hidden = tf.layers.conv2d_transpose(hidden, 512, 5, strides=2, padding='same')
        hidden = tf.layers.batch_normalization(hidden, training=is_train)
        hidden = lrelu(hidden)
        
        hidden = tf.layers.conv2d_transpose(hidden, 256, 5, strides=1, padding='same')
        hidden = tf.layers.batch_normalization(hidden, training=is_train)
        hidden = lrelu(hidden)
        
        hidden = tf.layers.conv2d_transpose(hidden, 128, 5, strides=1, padding='same')
        hidden = tf.layers.batch_normalization(hidden, training=is_train)
        hidden = lrelu(hidden)
        
        hidden = tf.layers.conv2d_transpose(hidden, 64, 1, strides=1, padding='same')
        hidden = tf.layers.batch_normalization(hidden, training=is_train)
        hidden = lrelu(hidden)
        
        hidden = tf.layers.conv2d_transpose(hidden, out_channel_dim, 5, strides=2, padding='same')
        hidden = tf.tanh(hidden)
        
        return hidden


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [9]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    g_model = generator(input_z, out_channel_dim, is_train=True)
    
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    smooth = 0.9
    
    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real) * (1 - smooth)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [10]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]
    
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    g_updates  = [opt for opt in update_ops if opt.name.startswith('generator')]
    with tf.control_dependencies(g_updates):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    
        return d_train_opt, g_train_opt

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [11]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [17]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    
    # Set image dimensions
    _, image_width, image_height, image_channels = data_shape
    # Set model inputs
    input_real, input_z, learn_rate = model_inputs(image_width, image_height, image_channels, z_dim)
    # Set model loss
    d_loss, g_loss = model_loss(input_real, input_z, image_channels)
    # Set model optimization
    d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    
    samples, losses = [], []
    steps    = 0    
    print_at = 50
    show_at  = 100
    
    saver    = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                steps += 1
                
                batch_images = batch_images * 2
                
                # Sample random noise for G
                sample_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))

                # Run optimizers
                _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: sample_z, learn_rate: learning_rate})
                _ = sess.run(g_opt, feed_dict={input_z: sample_z, learn_rate: learning_rate}) 
            
                                
                if steps % print_at == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: sample_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: sample_z})
                    
                    print("Epoch {}/{}...".format(epoch_i + 1, epoch_count),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    
                if steps % show_at == 0:
                    show_generator_output(sess, 64, input_z, image_channels, data_image_mode)
            show_generator_output(sess, 64, input_z, image_channels, data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [13]:
batch_size = 64
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Discriminator Loss: 0.5301... Generator Loss: 1.9780
Epoch 1/2... Discriminator Loss: 0.4067... Generator Loss: 2.9618
Epoch 1/2... Discriminator Loss: 0.3966... Generator Loss: 3.0207
Epoch 1/2... Discriminator Loss: 0.4407... Generator Loss: 3.9095
Epoch 1/2... Discriminator Loss: 0.4109... Generator Loss: 2.9574
Epoch 1/2... Discriminator Loss: 0.4107... Generator Loss: 2.6561
Epoch 1/2... Discriminator Loss: 0.3941... Generator Loss: 3.5762
Epoch 1/2... Discriminator Loss: 0.3920... Generator Loss: 3.4716
Epoch 1/2... Discriminator Loss: 0.3987... Generator Loss: 2.9571
Epoch 1/2... Discriminator Loss: 0.4513... Generator Loss: 4.4271
Epoch 1/2... Discriminator Loss: 0.4029... Generator Loss: 3.3189
Epoch 1/2... Discriminator Loss: 0.4112... Generator Loss: 2.5793
Epoch 1/2... Discriminator Loss: 0.3978... Generator Loss: 3.3506
Epoch 1/2... Discriminator Loss: 0.4052... Generator Loss: 2.6532
Epoch 1/2... Discriminator Loss: 0.3945... Generator Loss: 3.4615
Epoch 1/2... Discriminator Loss: 0.3984... Generator Loss: 3.0202
Epoch 1/2... Discriminator Loss: 0.4047... Generator Loss: 2.6832
Epoch 1/2... Discriminator Loss: 0.3968... Generator Loss: 3.0106
Epoch 2/2... Discriminator Loss: 0.4010... Generator Loss: 3.3190
Epoch 2/2... Discriminator Loss: 0.3980... Generator Loss: 3.0871
Epoch 2/2... Discriminator Loss: 0.3965... Generator Loss: 2.9794
Epoch 2/2... Discriminator Loss: 0.4033... Generator Loss: 3.1547
Epoch 2/2... Discriminator Loss: 0.3957... Generator Loss: 3.2272
Epoch 2/2... Discriminator Loss: 0.4061... Generator Loss: 3.6359
Epoch 2/2... Discriminator Loss: 0.3936... Generator Loss: 3.0040
Epoch 2/2... Discriminator Loss: 0.4063... Generator Loss: 2.6873
Epoch 2/2... Discriminator Loss: 0.4060... Generator Loss: 2.7030
Epoch 2/2... Discriminator Loss: 0.4002... Generator Loss: 3.2891
Epoch 2/2... Discriminator Loss: 0.4023... Generator Loss: 3.3284
Epoch 2/2... Discriminator Loss: 0.4060... Generator Loss: 2.6660
Epoch 2/2... Discriminator Loss: 0.4009... Generator Loss: 2.8383
Epoch 2/2... Discriminator Loss: 0.3969... Generator Loss: 2.8962
Epoch 2/2... Discriminator Loss: 0.3950... Generator Loss: 2.9728
Epoch 2/2... Discriminator Loss: 0.4302... Generator Loss: 3.9803
Epoch 2/2... Discriminator Loss: 0.3997... Generator Loss: 2.8469
Epoch 2/2... Discriminator Loss: 0.4075... Generator Loss: 2.6869
Epoch 2/2... Discriminator Loss: 0.3962... Generator Loss: 3.2532

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [19]:
batch_size = 64
z_dim = 100
learning_rate = 0.0001
beta1 = 0.3


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1... Discriminator Loss: 0.4511... Generator Loss: 3.4954
Epoch 1/1... Discriminator Loss: 0.4259... Generator Loss: 2.9007
Epoch 1/1... Discriminator Loss: 0.4318... Generator Loss: 3.8327
Epoch 1/1... Discriminator Loss: 0.4340... Generator Loss: 2.8626
Epoch 1/1... Discriminator Loss: 0.4348... Generator Loss: 3.1049
Epoch 1/1... Discriminator Loss: 0.4255... Generator Loss: 2.8232
Epoch 1/1... Discriminator Loss: 0.4184... Generator Loss: 2.8170
Epoch 1/1... Discriminator Loss: 0.4293... Generator Loss: 2.7999
Epoch 1/1... Discriminator Loss: 0.4379... Generator Loss: 2.6522
Epoch 1/1... Discriminator Loss: 0.4171... Generator Loss: 2.8085
Epoch 1/1... Discriminator Loss: 0.4330... Generator Loss: 2.6011
Epoch 1/1... Discriminator Loss: 0.4179... Generator Loss: 2.7418
Epoch 1/1... Discriminator Loss: 0.4150... Generator Loss: 3.0546
Epoch 1/1... Discriminator Loss: 0.4143... Generator Loss: 2.7735
Epoch 1/1... Discriminator Loss: 0.4158... Generator Loss: 2.7542
Epoch 1/1... Discriminator Loss: 0.4176... Generator Loss: 2.7054
Epoch 1/1... Discriminator Loss: 0.4126... Generator Loss: 2.9478
Epoch 1/1... Discriminator Loss: 0.4053... Generator Loss: 3.1621
Epoch 1/1... Discriminator Loss: 0.4085... Generator Loss: 2.7926
Epoch 1/1... Discriminator Loss: 0.4123... Generator Loss: 2.7757
Epoch 1/1... Discriminator Loss: 0.4080... Generator Loss: 3.0729
Epoch 1/1... Discriminator Loss: 0.4129... Generator Loss: 2.6983
Epoch 1/1... Discriminator Loss: 0.4035... Generator Loss: 3.0110
Epoch 1/1... Discriminator Loss: 0.4130... Generator Loss: 3.0549
Epoch 1/1... Discriminator Loss: 0.4048... Generator Loss: 2.8739
Epoch 1/1... Discriminator Loss: 0.4053... Generator Loss: 2.9909
Epoch 1/1... Discriminator Loss: 0.4047... Generator Loss: 2.9944
Epoch 1/1... Discriminator Loss: 0.4034... Generator Loss: 2.9366
Epoch 1/1... Discriminator Loss: 0.4072... Generator Loss: 2.8022
Epoch 1/1... Discriminator Loss: 0.4065... Generator Loss: 2.9609
Epoch 1/1... Discriminator Loss: 0.4029... Generator Loss: 2.8148
Epoch 1/1... Discriminator Loss: 0.4073... Generator Loss: 2.7378
Epoch 1/1... Discriminator Loss: 0.4064... Generator Loss: 2.8105
Epoch 1/1... Discriminator Loss: 0.4016... Generator Loss: 2.9236
Epoch 1/1... Discriminator Loss: 0.4073... Generator Loss: 2.7259
Epoch 1/1... Discriminator Loss: 0.4128... Generator Loss: 2.5937
Epoch 1/1... Discriminator Loss: 0.4017... Generator Loss: 2.9841
Epoch 1/1... Discriminator Loss: 0.4020... Generator Loss: 2.9152
Epoch 1/1... Discriminator Loss: 0.4032... Generator Loss: 2.8350
Epoch 1/1... Discriminator Loss: 0.4026... Generator Loss: 2.8664
Epoch 1/1... Discriminator Loss: 0.4056... Generator Loss: 3.3472
Epoch 1/1... Discriminator Loss: 0.4014... Generator Loss: 2.8194
Epoch 1/1... Discriminator Loss: 0.3982... Generator Loss: 2.9983
Epoch 1/1... Discriminator Loss: 0.4000... Generator Loss: 2.9572
Epoch 1/1... Discriminator Loss: 0.3990... Generator Loss: 3.1119
Epoch 1/1... Discriminator Loss: 0.4021... Generator Loss: 3.0679
Epoch 1/1... Discriminator Loss: 0.4057... Generator Loss: 3.1976
Epoch 1/1... Discriminator Loss: 0.4022... Generator Loss: 3.0529
Epoch 1/1... Discriminator Loss: 0.4021... Generator Loss: 2.8473
Epoch 1/1... Discriminator Loss: 0.4004... Generator Loss: 3.0529
Epoch 1/1... Discriminator Loss: 0.4010... Generator Loss: 2.7449
Epoch 1/1... Discriminator Loss: 0.3995... Generator Loss: 2.9761
Epoch 1/1... Discriminator Loss: 0.4010... Generator Loss: 3.1893
Epoch 1/1... Discriminator Loss: 0.4039... Generator Loss: 2.7565
Epoch 1/1... Discriminator Loss: 0.4049... Generator Loss: 2.7297
Epoch 1/1... Discriminator Loss: 0.4017... Generator Loss: 2.8691
Epoch 1/1... Discriminator Loss: 0.3997... Generator Loss: 2.9184
Epoch 1/1... Discriminator Loss: 0.4009... Generator Loss: 2.8224
Epoch 1/1... Discriminator Loss: 0.3992... Generator Loss: 3.0548
Epoch 1/1... Discriminator Loss: 0.4027... Generator Loss: 3.2716
Epoch 1/1... Discriminator Loss: 0.3986... Generator Loss: 3.0930
Epoch 1/1... Discriminator Loss: 0.4043... Generator Loss: 2.7359
Epoch 1/1... Discriminator Loss: 0.3985... Generator Loss: 3.0167

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.