In [1]:
%pylab inline
import statsmodels as sm
import matplotlib.cm as cm


Populating the interactive namespace from numpy and matplotlib

In [7]:
width, height = 100, 100
np.random.seed(42)

# Mirch
r = np.random.normal(loc=1, scale=0.001, size=(width, height))
#r = np.ones((width, height))
g = np.zeros((width, height))
#g = np.random.normal(loc=0.001, scale=0.001, size=(width, height))
#b = np.random.normal(loc=1, scale=0.01, size=(width, height))
b = np.zeros((width, height))
#b = np.random.normal(loc=0.001, scale=0.001, size=(width, height))

mirch = np.dstack((r, g, b))  # stacks 3 h x w arrays -> h x w x 3

# Haldi
b = np.zeros((width, height))
#r = np.ones((width, height))
g = np.random.normal(loc=1, scale=0.001, size=(width, height))
#g = np.random.normal(loc=0.001, scale=0.001, size=(width, height))
#b = np.random.normal(loc=1, scale=0.01, size=(width, height))
r = np.random.normal(loc=1, scale=0.001, size=(width, height))

haldi = np.dstack((r,g,b))




# Namak
b = np.random.normal(loc=1, scale=0.001, size=(width, height))
#r = np.ones((width, height))
g = np.random.normal(loc=1, scale=0.001, size=(width, height))
#g = np.random.normal(loc=0.001, scale=0.001, size=(width, height))
#b = np.random.normal(loc=1, scale=0.01, size=(width, height))
r = np.random.normal(loc=1, scale=0.001, size=(width, height))
namak = np.dstack((r,g,b))

# Kali Mirch

b = np.random.normal(loc=1, scale=0.1, size=(width, height))
#r = np.ones((width, height))
g = np.random.normal(loc=1, scale=0.1, size=(width, height))
#g = np.random.normal(loc=0.001, scale=0.001, size=(width, height))
#b = np.random.normal(loc=1, scale=0.01, size=(width, height))
r = np.random.normal(loc=1, scale=0.1, size=(width, height))

kmirch = np.dstack((r,g,b))

In [8]:
plt.imshow(mirch, cmap=cm.RdYlGn,)


Out[8]:
<matplotlib.image.AxesImage at 0x2aec232a4690>

In [9]:
plt.imshow(haldi)


Out[9]:
<matplotlib.image.AxesImage at 0x2aec2336e410>

In [10]:
plt.imshow(0.5*mirch+0.5*haldi)


Out[10]:
<matplotlib.image.AxesImage at 0x2aec233de350>

In [12]:
plt.imshow(kmirch, cmap='gray')


Out[12]:
<matplotlib.image.AxesImage at 0x2aec234b53d0>

In [14]:
plt.imshow(np.random.random((width, height)), cmap='gray')


Out[14]:
<matplotlib.image.AxesImage at 0x2aec2359a090>

In [ ]: