In [1]:
from collections import defaultdict, OrderedDict
import warnings
import logging
import gffutils
import pybedtools
import pandas as pd
import copy
import re
from gffutils.pybedtools_integration import tsses

logging.basicConfig(level=logging.INFO)

In [2]:
gtf = '/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gtf'
gtf_db = '/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gtf.db'
prefix = '/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils'
chrsizes = '/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/fasta/Xenopus_tropicalis.JGI_4.2.dna.toplevel.sizes'

In [3]:
db = gffutils.create_db(gtf, dbfn=gtf_db, disable_infer_genes=True, disable_infer_transcripts=True, merge_strategy='merge', force=True)
def create_gene_dict(db):
    '''
    Store each feature line db.all_features() as a dict of dicts
    '''
    gene_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
    for line_no, feature in enumerate(db.all_features()):
        gene_ids = feature.attributes['gene_id']
        feature_type = feature.featuretype
        if feature_type == 'gene':
            if len(gene_ids)!=1:
                logging.warning('Found multiple gene_ids on line {} in gtf'.format(line_no))
                break
            else:
                gene_id = gene_ids[0]
                gene_dict[gene_id]['gene'] = feature
        else:
            transcript_ids = feature.attributes['transcript_id']

            for gene_id in gene_ids:
                for transcript_id in transcript_ids:
                    gene_dict[gene_id][transcript_id][feature_type].append(feature)
    return gene_dict

In [4]:
db = gffutils.FeatureDB(gtf_db, keep_order=True)
gene_dict = create_gene_dict(db)

In [5]:
for x in db.featuretypes():
    print(x)


CDS
exon
five_prime_utr
gene
start_codon
stop_codon
three_prime_utr
transcript

In [6]:
def get_gene_list(gene_dict):
    return list(set(gene_dict.keys()))

def get_UTR_regions(gene_dict, gene_id, transcript, cds):
    if len(cds)==0:
        return [], []
    utr5_regions = []
    utr3_regions = []
    utrs = gene_dict[gene_id][transcript]['UTR']
    first_cds = cds[0]
    last_cds = cds[-1]
    for utr in utrs:
        ## Push all cds at once
        ## Sort later to remove duplicates
        strand = utr.strand
        if strand == '+':
            if utr.stop < first_cds.start:
                utr.feature_type = 'five_prime_UTR'
                utr5_regions.append(utr)
            elif utr.start > last_cds.stop:
                utr.feature_type = 'three_prime_UTR'
                utr3_regions.append(utr)
            else:
                raise RuntimeError('Error with cds')
        elif strand == '-':
            if utr.stop < first_cds.start:
                utr.feature_type = 'three_prime_UTR'
                utr3_regions.append(utr)
            elif utr.start > last_cds.stop:
                utr.feature_type = 'five_prime_UTR'
                utr5_regions.append(utr)                
            else:
                raise RuntimeError('Error with cds')    
    return utr5_regions, utr3_regions
    
def create_bed(regions, bedtype='0'):
    '''Create bed from list of regions
    bedtype: 0 or 1
        0-Based or 1-based coordinate of the BED
    '''
    bedstr = ''
    for region in regions:
        assert len(region.attributes['gene_id']) == 1
        ## GTF start is 1-based, so shift by one while writing 
        ## to 0-based BED format
        if bedtype == '0':
            start = region.start - 1
        else:
            start = region.start
        bedstr += '{}\t{}\t{}\t{}\t{}\t{}\n'.format(region.chrom,
                                             start,
                                             region.stop,
                                             re.sub('\.\d+', '', region.attributes['gene_id'][0]),
                                             '.',
                                             region.strand)
    # Remove duplicates
    bedstr = '\n'.join(list(OrderedDict.fromkeys(bedstr.split('\n'))))
    return bedstr

def rename_regions(regions, gene_id):
    regions = list(regions)
    if len(regions) == 0:
        return []
    for region in regions:
        region.attributes['gene_id'] = gene_id
    return regions

def merge_regions(db, regions):
    if len(regions) == 0:
        return []
    merged = db.merge(sorted(list(regions), key=lambda x: x.start))
    return merged

def merge_regions_nostrand(db, regions):
    if len(regions) == 0:
        return []
    merged = db.merge(sorted(list(regions), key=lambda x: x.start), ignore_strand=True)
    return merged

In [7]:
utr5_bed = ''
utr3_bed = ''



gene_bed = ''
exon_bed = ''
intron_bed = ''
start_codon_bed = ''
stop_codon_bed = ''
cds_bed = ''

gene_list = []

for gene_id in get_gene_list(gene_dict):
    gene_list.append(gene_dict[gene_id]['gene'])
    
    utr5_regions, utr3_regions = [], []
    exon_regions, intron_regions = [], []
    star_codon_regions, stop_codon_regions = [], []
    cds_regions = []
    
    for feature in gene_dict[gene_id].keys():
        if feature == 'gene':
            continue
        cds = list(gene_dict[gene_id][feature]['CDS'])
        exons = list(gene_dict[gene_id][feature]['exon'])
        merged_exons = merge_regions(db, exons)
        introns = db.interfeatures(merged_exons)
        utr5_region = list(gene_dict[gene_id][feature]['five_prime_utr'])
        utr3_region = list(gene_dict[gene_id][feature]['three_prime_utr'])
        utr5_regions += utr5_region
        utr3_regions += utr3_region
        exon_regions += exons
        intron_regions += introns
        cds_regions += cds
        
    merged_utr5 = merge_regions(db, utr5_regions)
    renamed_utr5 = rename_regions(merged_utr5, gene_id)
    
    merged_utr3 = merge_regions(db, utr3_regions)
    renamed_utr3 = rename_regions(merged_utr3, gene_id)
    
    merged_exons = merge_regions(db, exon_regions)
    renamed_exons = rename_regions(merged_exons, gene_id)
    
    merged_introns = merge_regions(db, intron_regions)
    renamed_introns = rename_regions(merged_introns, gene_id)
    
    merged_cds = merge_regions(db, cds_regions)
    renamed_cds = rename_regions(merged_cds, gene_id)
    
    utr3_bed += create_bed(renamed_utr3)
    utr5_bed += create_bed(renamed_utr5)
    exon_bed += create_bed(renamed_exons)
    intron_bed += create_bed(renamed_introns)
    cds_bed += create_bed(renamed_cds)
    
    
gene_bed = create_bed(gene_list)
gene_bedtool = pybedtools.BedTool(gene_bed, from_string=True)
utr5_bedtool = pybedtools.BedTool(utr5_bed, from_string=True)
utr3_bedtool = pybedtools.BedTool(utr3_bed, from_string=True)
exon_bedtool = pybedtools.BedTool(exon_bed, from_string=True)
intron_bedtool = pybedtools.BedTool(intron_bed, from_string=True)
cds_bedtool = pybedtools.BedTool(cds_bed, from_string=True)

gene_bedtool.remove_invalid().sort().saveas('{}.genes.bed'.format(prefix))
utr5_bedtool.remove_invalid().sort().saveas('{}.UTR5.bed'.format(prefix))
utr3_bedtool.remove_invalid().sort().saveas('{}.UTR3.bed'.format(prefix))
exon_bedtool.remove_invalid().sort().saveas('{}.exon.bed'.format(prefix))
intron_bedtool.remove_invalid().sort().saveas('{}.intron.bed'.format(prefix))
cds_bedtool.remove_invalid().sort().saveas('{}.cds.bed'.format(prefix))


Out[7]:
<BedTool(/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.cds.bed)>

In [8]:
utr5_region_bed = ''
utr3_region_bed = ''


for gene_id in get_gene_list(gene_dict):
    utr5_regions = []
    utr3_regions = []
    for utr5_region in db.children(gene_id, featuretype='five_prime_utr'):
        utr5_regions.append(utr5_region)
    for utr3_region in db.children(gene_id, featuretype='three_prime_utr'):
        utr3_regions.append(utr3_region)
    merged_utr5_regions = merge_regions(db, utr5_regions)
    renamed_utr5_regions = rename_regions(merged_utr5_regions, gene_id)
    merged_utr3_regions = merge_regions(db, utr3_regions)
    renamed_utr3_regions = rename_regions(merged_utr3_regions, gene_id)
    
    utr5_region_bed += create_bed(renamed_utr5_regions)    
    utr3_region_bed += create_bed(renamed_utr3_regions)


    
utr5_region_bedtool = pybedtools.BedTool(utr5_region_bed, from_string=True)
utr3_region_bedtool = pybedtools.BedTool(utr3_region_bed, from_string=True)

In [9]:
utr5_region_bedtool.remove_invalid().sort().saveas('{}.utr5_region.bed'.format(prefix))
utr3_region_bedtool.remove_invalid().sort().saveas('{}.utr3_region.bed'.format(prefix))


Out[9]:
<BedTool(/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.utr3_region.bed)>

In [11]:
'{}.utr5_region.bed'.format(prefix)


Out[11]:
'/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.utr5_region.bed'

In [10]:
!bedSort /home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.utr3_region.bed /home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.utr3_region.bed

In [12]:
!bedSort /home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.utr5_region.bed /home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.utr5_region.bed

In [13]:
tRNA_sites = []
tRNA_bed = ''
for gene_id in get_gene_list(gene_dict):
    for transcript in db.children(gene_id, featuretype='transcript'):
        if 'tRNA' in transcript.attributes['gene_biotype'] or 'Mt_tRNA' in transcript.attributes['transcript_biotype']:
            tRNA_sites.append(transcript)
    #merged_tRNA_sites = merge_regions_nostrand(db, tRNA_sites)
    #renamed_tRNA_sites = rename_regions(merged_tRNA_sites, gene_id)
    tRNA_bed += create_bed(tRNA_sites)

tRNA_bed = '\n'.join(list(OrderedDict.fromkeys(tRNA_bed.split('\n'))))
tRNA_sites_bedtool = pybedtools.BedTool(tRNA_bed, from_string=True)
tRNA_sites_bedtool.remove_invalid().sort().saveas('{}.tRNA_sites.bed'.format(prefix))


Out[13]:
<BedTool(/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.tRNA_sites.bed)>

In [14]:
tRNA_sites_bedtool.to_dataframe()


Out[14]:
chrom start end name score strand
0 NC_006839 9498 9568 ENSXETG00000034379 . +
1 NC_006839 5004 5073 ENSXETG00000034366 . +
2 NC_006839 11648 11717 ENSXETG00000034384 . +
3 NC_006839 11717 11785 ENSXETG00000034385 . +
4 NC_006839 11785 11858 ENSXETG00000034386 . +
5 NC_006839 9911 9980 ENSXETG00000034381 . +
6 NC_006839 14186 14255 ENSXETG00000034389 . -
7 NC_006839 7798 7872 ENSXETG00000034375 . +
8 NC_006839 7039 7108 ENSXETG00000034373 . +
9 NC_006839 6953 7024 ENSXETG00000034372 . -
10 NC_006839 3759 3830 ENSXETG00000034362 . +
11 NC_006839 3829 3900 ENSXETG00000034363 . -
12 NC_006839 2716 2791 ENSXETG00000034360 . +
13 NC_006839 5146 5219 ENSXETG00000034368 . -
14 NC_006839 5257 5323 ENSXETG00000034369 . -
15 NC_006839 15499 15566 ENSXETG00000034392 . +
16 NC_006839 15399 15470 ENSXETG00000034391 . +
17 NC_006839 0 68 ENSXETG00000034356 . +
18 NC_006839 5076 5145 ENSXETG00000034367 . -
19 NC_006839 3899 3968 ENSXETG00000034364 . +
20 NC_006839 5323 5393 ENSXETG00000034370 . -
21 NC_006839 1011 1081 ENSXETG00000034358 . +

In [15]:
rRNA_sites = []
rRNA_bed = ''
for gene_id in get_gene_list(gene_dict):
    for transcript in db.children(gene_id, featuretype='transcript'):
        if 'rRNA' in transcript.attributes['gene_biotype']:
            rRNA_sites.append(transcript)
    #renamed_rRNA_sites = rename_regions(rRNA_sites, gene_id)
    rRNA_bed += create_bed(rRNA_sites)
rRNA_bed = '\n'.join(list(OrderedDict.fromkeys(rRNA_bed.split('\n'))))
rRNA_sites_bedtool = pybedtools.BedTool(rRNA_bed, from_string=True)
rRNA_sites_bedtool.remove_invalid().sort().saveas('{}.rRNA_sites.bed'.format(prefix))


Out[15]:
<BedTool(/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.rRNA_sites.bed)>

In [16]:
rRNA_sites_bedtool.to_dataframe()


Out[16]:
chrom start end name score strand
0 GL173208.1 205449 205579 ENSXETG00000029707 . -
1 GL172919.1 1153290 1153409 ENSXETG00000029943 . +
2 GL189750.1 973 1092 ENSXETG00000031678 . -
3 GL173818.1 75436 75555 ENSXETG00000034259 . -
4 GL177336.1 7772 7885 ENSXETG00000031536 . -
5 GL172919.1 1153575 1153610 ENSXETG00000029722 . +
6 GL173415.1 198515 198633 ENSXETG00000029724 . -
7 GL173816.1 2970 3070 ENSXETG00000028457 . +
8 GL174142.1 57950 58069 ENSXETG00000028456 . +
9 GL174142.1 40568 40687 ENSXETG00000033568 . +
10 GL173381.1 110724 110838 ENSXETG00000031885 . -
11 GL173707.1 183537 183656 ENSXETG00000031550 . -
12 GL175741.1 8540 8659 ENSXETG00000032288 . -
13 GL173818.1 68334 68453 ENSXETG00000033770 . -
14 GL189750.1 445 564 ENSXETG00000033952 . -
15 GL189750.1 709 828 ENSXETG00000030279 . -
16 GL174202.1 69545 69664 ENSXETG00000028478 . -
17 GL172639.1 3585760 3585878 ENSXETG00000029301 . +
18 GL173459.1 204775 204894 ENSXETG00000029304 . -
19 GL173797.1 59573 59692 ENSXETG00000032947 . -
20 GL172660.1 771879 771976 ENSXETG00000029685 . +
21 GL172660.1 844146 844224 ENSXETG00000029689 . +
22 GL174142.1 46191 46310 ENSXETG00000031717 . +
23 GL172919.1 1157248 1157367 ENSXETG00000030619 . +
24 GL174641.1 712 831 ENSXETG00000031409 . -
25 GL174142.1 40832 40951 ENSXETG00000031388 . +
26 GL173707.1 186719 186838 ENSXETG00000031400 . -
27 GL190802.1 87 206 ENSXETG00000033034 . +
28 GL172660.1 30535 30660 ENSXETG00000029663 . -
29 GL178569.1 2918 3037 ENSXETG00000028202 . -
... ... ... ... ... ... ...
240 GL173797.1 55015 55134 ENSXETG00000030658 . -
241 GL182039.1 3291 3410 ENSXETG00000032777 . -
242 GL172831.1 790430 790546 ENSXETG00000029747 . -
243 GL174641.1 1235 1354 ENSXETG00000030186 . -
244 GL182039.1 2646 2765 ENSXETG00000030187 . -
245 GL189750.1 191 300 ENSXETG00000031329 . -
246 GL173409.1 293325 293444 ENSXETG00000031324 . +
247 GL173797.1 60119 60238 ENSXETG00000033670 . -
248 GL173816.1 8726 8835 ENSXETG00000028767 . +
249 GL190659.1 106 225 ENSXETG00000033890 . -
250 GL172919.1 1156467 1156576 ENSXETG00000028189 . +
251 GL174142.1 42152 42271 ENSXETG00000033330 . +
252 GL173797.1 55279 55398 ENSXETG00000031583 . -
253 GL173818.1 74397 74516 ENSXETG00000033798 . -
254 GL173816.1 7446 7565 ENSXETG00000033422 . +
255 GL173707.1 188644 188763 ENSXETG00000030219 . -
256 GL190659.1 370 489 ENSXETG00000030215 . -
257 GL190802.1 351 470 ENSXETG00000033937 . +
258 GL174142.1 43815 43934 ENSXETG00000033935 . +
259 GL176103.1 7975 8094 ENSXETG00000028141 . -
260 GL174641.1 976 1095 ENSXETG00000032309 . -
261 GL176103.1 7721 7830 ENSXETG00000028777 . -
262 GL183261.1 903 1022 ENSXETG00000033654 . -
263 GL174202.1 70602 70721 ENSXETG00000030086 . -
264 GL172974.1 672068 672185 ENSXETG00000028709 . +
265 GL173707.1 187948 188067 ENSXETG00000032468 . -
266 GL178992.1 2487 2641 ENSXETG00000030685 . -
267 GL188195.1 18 137 ENSXETG00000030020 . -
268 GL173647.1 100514 100633 ENSXETG00000028112 . -
269 GL178273.1 3967 4119 ENSXETG00000032797 . -

270 rows × 6 columns


In [17]:
for gene_id in get_gene_list(gene_dict):
    start_codons = []
    stop_codons = []
    for start_codon in db.children(gene_id, featuretype='start_codon'):
        ## 1 -based stop
        ## 0-based start handled while converting to bed
        start_codon.stop = start_codon.start
        start_codons.append(start_codon)
    for stop_codon in db.children(gene_id, featuretype='stop_codon'):
        stop_codon.start = stop_codon.stop
        stop_codon.stop = stop_codon.stop+1
        stop_codons.append(stop_codon)
    merged_start_codons = merge_regions(db, start_codons)
    renamed_start_codons = rename_regions(merged_start_codons, gene_id)
    merged_stop_codons = merge_regions(db, stop_codons)
    renamed_stop_codons = rename_regions(merged_stop_codons, gene_id)
    
    start_codon_bed += create_bed(renamed_start_codons)    
    stop_codon_bed += create_bed(renamed_stop_codons)


    
start_codon_bedtool = pybedtools.BedTool(start_codon_bed, from_string=True)
stop_codon_bedtool = pybedtools.BedTool(stop_codon_bed, from_string=True)
start_codon_bedtool.remove_invalid().sort().saveas('{}.start_codon.bed'.format(prefix))
stop_codon_bedtool.remove_invalid().sort().saveas('{}.stop_codon.bed'.format(prefix))


Out[17]:
<BedTool(/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.stop_codon.bed)>

In [18]:
## TSS
polyA_sites_bed = ''
tss_sites_bed = ''
for gene_id in get_gene_list(gene_dict):
    tss_sites = []
    polyA_sites = []
    for transcript in db.children(gene_id, featuretype='transcript'):
        start_t = copy.deepcopy(transcript)
        stop_t = copy.deepcopy(transcript)
        
        start_t.stop = start_t.start + 1
        
        stop_t.start = stop_t.stop
        
        if transcript.strand == '-':
            start_t, stop_t = stop_t, start_t
        polyA_sites.append(start_t)
        tss_sites.append(stop_t)
    merged_polyA_sites = merge_regions(db, polyA_sites)
    renamed_polyA_sites = rename_regions(merged_polyA_sites, gene_id)    
    merged_tss_sites = merge_regions(db, tss_sites)
    renamed_tss_sites = rename_regions(merged_tss_sites, gene_id)
    polyA_sites_bed += create_bed(renamed_polyA_sites)    
    tss_sites_bed += create_bed(renamed_tss_sites)

polyA_sites_bedtool = pybedtools.BedTool(polyA_sites_bed, from_string=True)
tss_sites_bedtool = pybedtools.BedTool(tss_sites_bed, from_string=True)
polyA_sites_bedtool.remove_invalid().sort().saveas('{}.polyA_sites.bed'.format(prefix))
tss_sites_bedtool.remove_invalid().sort().saveas('{}.tss_sites.bed'.format(prefix))


Out[18]:
<BedTool(/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.tss_sites.bed)>

In [19]:
tss = tsses(db, as_bed6=True)#, merge_overlapping=True)
tss.remove_invalid().sort().saveas('{}.tss_temp.bed'.format(prefix))
promoter = tss.slop(l=1000, r=1000, s=True, g=chrsizes)
promoter.remove_invalid().sort().saveas('{}.promoter.1000.bed'.format(prefix))


Out[19]:
<BedTool(/home/cmb-panasas2/skchoudh/genomes/xenopus_tropicalis_JGI_4.2/annotation/Xenopus_tropicalis.JGI_4.2.91.gffutils.promoter.1000.bed)>

In [20]:
for l in [1000, 2000, 3000, 4000, 5000]:
    promoter = tss.slop(l=l, r=l, s=True, g=chrsizes)
    promoter.remove_invalid().sort().saveas('{}.promoter.{}.bed'.format(prefix, l))

In [ ]: