In [1]:
from theano.sandbox import cuda
In [2]:
%matplotlib inline
import utils; reload(utils)
from utils import *
from __future__ import division, print_function
In [3]:
batch_size=64
In [4]:
from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
Out[4]:
In [5]:
X_test = np.expand_dims(X_test,1)
X_train = np.expand_dims(X_train,1)
In [6]:
X_train.shape
Out[6]:
In [7]:
y_train[:5]
Out[7]:
In [8]:
y_train = onehot(y_train)
y_test = onehot(y_test)
In [9]:
y_train[:5]
Out[9]:
In [10]:
mean_px = X_train.mean().astype(np.float32)
std_px = X_train.std().astype(np.float32)
In [11]:
def norm_input(x): return (x-mean_px)/std_px
In [12]:
def get_lin_model():
model = Sequential([
Lambda(norm_input, input_shape=(1,28,28)),
Flatten(),
Dense(10, activation='softmax')
])
model.compile(Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
return model
In [13]:
lm = get_lin_model()
In [14]:
gen = image.ImageDataGenerator()
batches = gen.flow(X_train, y_train, batch_size=64)
test_batches = gen.flow(X_test, y_test, batch_size=64)
In [15]:
lm.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[15]:
In [16]:
lm.optimizer.lr=0.1
In [17]:
lm.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[17]:
In [18]:
lm.optimizer.lr=0.01
In [19]:
lm.fit_generator(batches, batches.n, nb_epoch=4, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[19]:
In [20]:
def get_fc_model():
model = Sequential([
Lambda(norm_input, input_shape=(1,28,28)),
Flatten(),
Dense(512, activation='softmax'),
Dense(10, activation='softmax')
])
model.compile(Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
return model
In [21]:
fc = get_fc_model()
In [22]:
fc.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[22]:
In [23]:
fc.optimizer.lr=0.1
In [24]:
fc.fit_generator(batches, batches.n, nb_epoch=4, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[24]:
In [25]:
fc.optimizer.lr=0.01
In [26]:
fc.fit_generator(batches, batches.n, nb_epoch=4, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[26]:
In [27]:
def get_model():
model = Sequential([
Lambda(norm_input, input_shape=(1,28,28)),
Convolution2D(32,3,3, activation='relu'),
Convolution2D(32,3,3, activation='relu'),
MaxPooling2D(),
Convolution2D(64,3,3, activation='relu'),
Convolution2D(64,3,3, activation='relu'),
MaxPooling2D(),
Flatten(),
Dense(512, activation='relu'),
Dense(10, activation='softmax')
])
model.compile(Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
return model
In [28]:
model = get_model()
In [29]:
model.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[29]:
In [30]:
model.optimizer.lr=0.1
In [31]:
model.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[31]:
In [32]:
model.optimizer.lr=0.01
In [33]:
model.fit_generator(batches, batches.n, nb_epoch=8, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[33]:
In [34]:
model = get_model()
In [35]:
gen = image.ImageDataGenerator(rotation_range=8, width_shift_range=0.08, shear_range=0.3,
height_shift_range=0.08, zoom_range=0.08)
batches = gen.flow(X_train, y_train, batch_size=64)
test_batches = gen.flow(X_test, y_test, batch_size=64)
In [36]:
model.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[36]:
In [37]:
model.optimizer.lr=0.1
In [38]:
model.fit_generator(batches, batches.n, nb_epoch=4, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[38]:
In [39]:
model.optimizer.lr=0.01
In [40]:
model.fit_generator(batches, batches.n, nb_epoch=8, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[40]:
In [41]:
model.optimizer.lr=0.001
In [42]:
model.fit_generator(batches, batches.n, nb_epoch=14, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[42]:
In [43]:
model.optimizer.lr=0.0001
In [44]:
model.fit_generator(batches, batches.n, nb_epoch=10, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[44]:
In [45]:
def get_model_bn():
model = Sequential([
Lambda(norm_input, input_shape=(1,28,28)),
Convolution2D(32,3,3, activation='relu'),
BatchNormalization(axis=1),
Convolution2D(32,3,3, activation='relu'),
MaxPooling2D(),
BatchNormalization(axis=1),
Convolution2D(64,3,3, activation='relu'),
BatchNormalization(axis=1),
Convolution2D(64,3,3, activation='relu'),
MaxPooling2D(),
Flatten(),
BatchNormalization(),
Dense(512, activation='relu'),
BatchNormalization(),
Dense(10, activation='softmax')
])
model.compile(Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
return model
In [46]:
model = get_model_bn()
In [47]:
model.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[47]:
In [48]:
model.optimizer.lr=0.1
In [49]:
model.fit_generator(batches, batches.n, nb_epoch=4, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[49]:
In [50]:
model.optimizer.lr=0.01
In [51]:
model.fit_generator(batches, batches.n, nb_epoch=12,verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[51]:
In [52]:
model.optimizer.lr=0.001
In [53]:
model.fit_generator(batches, batches.n, nb_epoch=12, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[53]:
In [54]:
def get_model_bn_do():
model = Sequential([
Lambda(norm_input, input_shape=(1,28,28)),
Convolution2D(32,3,3, activation='relu'),
BatchNormalization(axis=1),
Convolution2D(32,3,3, activation='relu'),
MaxPooling2D(),
BatchNormalization(axis=1),
Convolution2D(64,3,3, activation='relu'),
BatchNormalization(axis=1),
Convolution2D(64,3,3, activation='relu'),
MaxPooling2D(),
Flatten(),
BatchNormalization(),
Dense(512, activation='relu'),
BatchNormalization(),
Dropout(0.5),
Dense(10, activation='softmax')
])
model.compile(Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
return model
In [55]:
model = get_model_bn_do()
In [56]:
model.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[56]:
In [57]:
model.optimizer.lr=0.1
In [58]:
model.fit_generator(batches, batches.n, nb_epoch=4, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[58]:
In [59]:
model.optimizer.lr=0.01
In [60]:
model.fit_generator(batches, batches.n, nb_epoch=12,verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[60]:
In [61]:
model.optimizer.lr=0.001
In [62]:
model.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
Out[62]:
In [63]:
def fit_model():
model = get_model_bn_do()
model.fit_generator(batches, batches.n, nb_epoch=1, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
model.optimizer.lr=0.1
model.fit_generator(batches, batches.n, nb_epoch=4, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
model.optimizer.lr=0.01
model.fit_generator(batches, batches.n, nb_epoch=12, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
model.optimizer.lr=0.001
model.fit_generator(batches, batches.n, nb_epoch=18, verbose=2,
validation_data=test_batches, nb_val_samples=test_batches.n)
return model
In [64]:
models = [fit_model() for i in range(6)]
In [65]:
path = "data/mnist/"
model_path = path + 'models/'
In [67]:
for i,m in enumerate(models):
m.save_weights(model_path+'cnn-mnist23-'+str(i)+'.pkl')
In [69]:
evals = np.array([m.evaluate(X_test, y_test, batch_size=256) for m in models])
In [70]:
evals.mean(axis=0)
Out[70]:
In [71]:
all_preds = np.stack([m.predict(X_test, batch_size=256) for m in models])
In [72]:
all_preds.shape
Out[72]:
In [73]:
avg_preds = all_preds.mean(axis=0)
In [74]:
keras.metrics.categorical_accuracy(y_test, avg_preds).eval()
Out[74]:
In [ ]: