In [1]:
from __future__ import print_function, division

In [2]:
# This changes the current directory to the base saga directory - make sure to run this first!
# This is necessary to be able to import the py files and use the right directories,
# while keeping all the notebooks in their own directory.
import os
import sys
from time import time

if 'saga_base_dir' not in locals():
    saga_base_dir = os.path.abspath('..')
if saga_base_dir not in sys.path:
    os.chdir(saga_base_dir)

In [3]:
import targeting
import casjobs

import numpy as np

from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.table import Table
from astropy.io import fits

from astropy.utils.console import ProgressBar
from astropy.utils import data

In [4]:
%matplotlib inline
from matplotlib import style, pyplot as plt

plt.style.use('seaborn-deep')
plt.rcParams['image.cmap'] = 'viridis'
plt.rcParams['image.origin'] = 'lower'
plt.rcParams['figure.figsize'] = (14, 8)
plt.rcParams['axes.titlesize'] =  plt.rcParams['axes.labelsize'] = 16
plt.rcParams['xtick.labelsize'] =  plt.rcParams['ytick.labelsize'] = 14

In [5]:
from IPython import display

In [6]:
# from the DECALS low-SB_brick selection and data download notebook
bricknames = ['1181m012', '2208m005']

Load the catalogs


In [7]:
catalog_fns = ['decals_dr3/catalogs/tractor-{}.fits'.format(bnm) for bnm in bricknames]
decals_catalogs = [Table.read(fn) for fn in catalog_fns]
decals_catalogs[0]


WARNING: UnitsWarning: '1/deg^2' did not parse as fits unit: Numeric factor not supported by FITS [astropy.units.core]
WARNING:astropy:UnitsWarning: '1/deg^2' did not parse as fits unit: Numeric factor not supported by FITS
WARNING: UnitsWarning: 'nanomaggy' did not parse as fits unit: At col 0, Unit 'nanomaggy' not supported by the FITS standard.  [astropy.units.core]
WARNING:astropy:UnitsWarning: 'nanomaggy' did not parse as fits unit: At col 0, Unit 'nanomaggy' not supported by the FITS standard. 
WARNING: UnitsWarning: '1/nanomaggy^2' did not parse as fits unit: Numeric factor not supported by FITS [astropy.units.core]
WARNING:astropy:UnitsWarning: '1/nanomaggy^2' did not parse as fits unit: Numeric factor not supported by FITS
WARNING: UnitsWarning: '1/arcsec^2' did not parse as fits unit: Numeric factor not supported by FITS [astropy.units.core]
WARNING:astropy:UnitsWarning: '1/arcsec^2' did not parse as fits unit: Numeric factor not supported by FITS
Out[7]:
<Table length=8523>
brickidbricknameobjidbrick_primaryblobninblobtycho2inblobtyperara_ivardecdec_ivarbxbybx0by0left_blobout_of_boundsdchisq [5]ebvcpu_sourcecpu_blobblob_widthblob_heightblob_npixblob_nimagesblob_totalpixdecam_flux [6]decam_flux_ivar [6]decam_apflux [6,8]decam_apflux_resid [6,8]decam_apflux_ivar [6,8]decam_mw_transmission [6]decam_nobs [6]decam_rchi2 [6]decam_fracflux [6]decam_fracmasked [6]decam_fracin [6]decam_anymask [6]decam_allmask [6]decam_psfsize [6]wise_flux [4]wise_flux_ivar [4]wise_mw_transmission [4]wise_nobs [4]wise_fracflux [4]wise_rchi2 [4]wise_lc_flux [2,5]wise_lc_flux_ivar [2,5]wise_lc_nobs [2,5]wise_lc_fracflux [2,5]wise_lc_rchi2 [2,5]wise_lc_mjd [2,5]fracDevfracDev_ivarshapeExp_rshapeExp_r_ivarshapeExp_e1shapeExp_e1_ivarshapeExp_e2shapeExp_e2_ivarshapeDev_rshapeDev_r_ivarshapeDev_e1shapeDev_e1_ivarshapeDev_e2shapeDev_e2_ivardecam_depth [6]decam_galdepth [6]
deg1/deg^2deg1/deg^2magnanomaggy1/nanomaggy^2nanomaggynanomaggy1/nanomaggy^2nanomaggy1/nanomaggy^2nanomaggy1/nanomaggy^2arcsec1/arcsec^2arcsec1/arcsec^21/nanomaggy^21/nanomaggy^2
int32str8int32boolint32int16boolstr4float64float32float64float32float32float32float32float32boolboolfloat32float32float32float32int16int16int32int16int32float32float32float32float32float32float32uint8float32float32float32float32int16int16float32float32float32float32int16float32float32float32float32int16float32float32float32float32float32float32float32float32float32float32float32float32float32float32float32float32float32float32float32
3236401181m0120False06FalsePSF118.2525944872.48411e+15-1.378308251422.9577e+1546.793336.43646.036.0FalseFalse6.35332e+07 .. 6.35482e+070.040665622.65130.2683905116381719610.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.861026 .. 0.9609320 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.0320.46 .. 31.09051.07987 .. 2.04253e-050.993132 .. 0.99965941 .. 120.0223309 .. 9.6285327.0945 .. 0.0823431331.142 .. 0.00.414911 .. 0.016 .. 00.0233279 .. 0.017.787 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0121False06FalsePSF118.252480658.3185e+13-1.37977328978.71538e+1348.35816.305649.016.0FalseFalse2.1115e+06 .. 2.11352e+060.040509421.4130.2683905116381719610.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.861521 .. 0.9610790 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.021.4567 .. 597.4961.10308 .. 1.95185e-050.993158 .. 0.99966141 .. 125.05534 .. 1.024054.64669 .. 0.080284825.9851 .. 0.00.406838 .. 0.016 .. 04.15867 .. 0.06.55349 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0122False06FalseCOMP118.2539758671.87005e+11-1.380010198881.24083e+1127.81913.049229.013.0FalseFalse9281.39 .. 12596.40.040521749.17130.2683905116381719610.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.861482 .. 0.9610680 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.0-4.0062 .. -628.6270.14315 .. 3.94969e-060.993156 .. 0.9996641 .. 1248.7014 .. 1.720352.17504 .. 0.0467402-29.0428 .. 0.00.0545248 .. 0.016 .. 07.07213 .. 0.02.16092 .. 0.055303.8 .. 0.00.753709134198.01.067132907.790.4569892088.820.5221411884.857.5912600609.0-0.851406586060.0-0.438843588830.00.0 .. 0.00.0 .. 0.0
3236401181m0123False06FalsePSF118.2501631224.09477e+10-1.380549290144.2057e+1080.19345.6446180.07.0FalseFalse1272.49 .. 0.00.040377213.02130.2683905116381719610.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.86194 .. 0.9612040 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.0-2.70414 .. -716.0641.06668 .. 1.73811e-050.993181 .. 0.99966241 .. 123.82456 .. 0.3778320.761609 .. 0.0742716-2.51935 .. 0.00.417921 .. 0.016 .. 03.95394 .. 0.00.685381 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0124False06FalsePSF118.2506577788.25225e+09-1.375303123448.60662e+0973.395177.729573.078.0FalseFalse242.767 .. 0.00.04093633.72130.2683905116381719610.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.860169 .. 0.9606770 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.0-4.46834 .. -98.02791.11078 .. 2.10694e-050.993087 .. 0.99965741 .. 121.75354 .. 2.624932.32345 .. 0.138882-5.6743 .. 0.00.423655 .. 0.016 .. 01.35322 .. 0.00.738962 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0125False06FalsePSF118.250592151.84365e+10-1.377904965821.81039e+1074.298341.978875.041.0FalseFalse427.541 .. 0.00.040663412.53130.2683905116381719610.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.861033 .. 0.9609340 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.0-5.3755 .. 1.969441.08817 .. 2.07582e-050.993132 .. 0.99965941 .. 128.83784 .. 191.9974.07768 .. 0.114766-11.329 .. 0.00.420135 .. 0.016 .. 04.27793 .. 0.04.70479 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0126False11FalseSIMP118.2450402251.98779e+09-1.380690383541.99806e+09150.5643.70954150.04.0FalseFalse108.434 .. 111.8070.040250513.5213.7922172593893850.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.862342 .. 0.9613230 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.02.74508 .. 67.98111.03971 .. 1.64403e-050.993202 .. 0.99966341 .. 120.319015 .. 3.954740.902131 .. 0.0798321.43487 .. 0.00.397621 .. 0.016 .. 00.578806 .. 0.00.712652 .. 0.055303.8 .. 0.00.00.00.450.450.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0127False21FalsePSF118.2412425841.75952e+09-1.380283387791.81672e+09202.7319.30448203.010.0FalseFalse59.3686 .. 0.00.04020971.892.1222212723898510.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.862472 .. 0.9613620 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.0-3.07525 .. -92.67331.09683 .. 1.78579e-050.993209 .. 0.99966341 .. 120.239079 .. 2.561190.834822 .. 0.114127-3.18445 .. 0.00.42286 .. 0.016 .. 00.2224 .. 0.01.37186 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128False35FalsePSF118.2382741242.91639e+12-1.37999439963.23359e+12243.50713.2773243.014.0FalseFalse91789.8 .. 0.00.040174617.0886.0283772970381032280.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.862583 .. 0.9613950 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.00.841678 .. -281.4521.06579 .. 1.91831e-050.993215 .. 0.99966341 .. 123.10803 .. 1.114530.654418 .. 0.08399070.937999 .. 0.00.415235 .. 0.016 .. 02.73349 .. 0.00.335159 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
...............................................................................................................................................................................................................
3236401181m0128513False31752FalsePSF118.1352699066.70328e+10-1.119198752995.00395e+101658.413596.771658.03597.0FalseFalse2431.42 .. 0.00.05801396.8917.04312654429152970.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.807781 .. 0.9447330 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.03.14079 .. -172.3270.948415 .. 1.40696e-050.990217 .. 0.99951441 .. 120.418807 .. 1.045910.436636 .. 0.05761661.5626 .. 0.00.324729 .. 0.015 .. 02.45592 .. 0.00.214176 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128514False31752FalsePSF118.1349139582.3829e+10-1.119969437332.53498e+101663.33586.181663.03586.0FalseFalse907.765 .. 0.00.05799189.617.04312654429152970.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.807847 .. 0.9447540 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.0-1.08065 .. -6.000481.10675 .. 1.86153e-050.99022 .. 0.99951441 .. 123.27659 .. 49.57180.498099 .. 0.06794343.30247 .. 0.00.382068 .. 0.015 .. 00.75886 .. 0.00.245392 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128515False31762FalsePSF118.089884062.9789e+10-1.120025016143.22192e+102281.923585.422282.03586.0FalseFalse1114.32 .. 0.00.06061247.710.12372659229170100.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.800095 .. 0.9423310 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.00.849579 .. -941.491.06353 .. 1.87368e-050.989781 .. 0.99949240 .. 125.97255 .. 1.612790.987645 .. 0.08090452.3727 .. 0.00.384727 .. 0.015 .. 01.93441 .. 0.00.914312 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128516False31762FalsePSF118.0888852647.35941e+09-1.119636184557.90759e+092295.643590.762295.03591.0FalseFalse282.213 .. 0.00.0607141.8810.12372659229170100.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.799796 .. 0.9422370 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.00.991771 .. 1180.531.0591 .. 1.66363e-050.989764 .. 0.99949140 .. 123.56635 .. 0.6564580.911258 .. 0.07671330.120702 .. 0.00.37921 .. 0.015 .. 036.0181 .. 0.00.680767 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128517False31771FalsePSF118.0635601942.56285e+11-1.119805053272.8077e+112643.553588.432643.03588.0FalseFalse9491.82 .. 0.00.0600378.388.56432670129195870.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.801791 .. 0.9428620 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.07.63037 .. 658.7421.03986 .. 1.81779e-050.989877 .. 0.99949740 .. 120.264717 .. 0.1611841.93499 .. 0.08093459.22062 .. 0.00.383248 .. 0.015 .. 00.230913 .. 0.01.1279 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128518False31781FalsePSF118.0290492512.13546e+12-1.119617963242.39192e+123117.663590.993118.03591.0FalseFalse78466.3 .. 0.00.05830329.519.69352667829190130.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.806922 .. 0.9444660 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.017.912 .. -51.15431.04655 .. 1.97534e-050.990168 .. 0.99951141 .. 140.0521768 .. 7.332461.91876 .. 0.16458716.0305 .. 0.00.387176 .. 0.015 .. 00.0600971 .. 0.00.938046 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128519False31791FalsePSF118.0690959231.93804e+09-1.119966266982.10412e+092567.53586.222568.03586.0FalseFalse73.856 .. 0.00.06026471.862.0223243382996530.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.801119 .. 0.9426520 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.02.32531 .. 448.361.04761 .. 1.83617e-050.989839 .. 0.99949540 .. 120.516421 .. 0.4226470.796035 .. 0.07454151.79899 .. 0.00.396187 .. 0.015 .. 00.735583 .. 0.00.610321 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128520False31801FalseSIMP118.1788844645.95774e+09-1.119805425236.32368e+091059.243588.431059.03589.0FalseFalse377.332 .. 400.490.05225869.29.38282343226105630.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.82507 .. 0.9500770 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.02.40687 .. 322.0831.04294 .. 1.56724e-050.991183 .. 0.99956240 .. 110.947938 .. 0.6826291.09705 .. 0.101342.39324 .. 0.00.356761 .. 0.014 .. 00.76619 .. 0.00.590753 .. 0.055303.8 .. 0.00.00.00.450.450.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128521False31811FalsePSF118.0087427561.09354e+11-1.119468924141.20315e+113396.633593.033397.03593.0FalseFalse3940.22 .. 0.00.05703328.658.82282142629119710.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.810701 .. 0.9456420 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.02.88734 .. 320.7750.997835 .. 1.85676e-050.990381 .. 0.99952240 .. 141.80594 .. 0.5182384.06113 .. 0.1236993.11594 .. 0.00.343691 .. 0.014 .. 01.70687 .. 0.02.36757 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0
3236401181m0128522False31821FalsePSF118.2529867136.51781e+09-1.119313141146.73258e+0941.2323595.1641.03595.0FalseFalse245.585 .. 0.00.04676862.192.3525172942981600.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00.841906 .. 0.9552020 .. 00.0 .. 0.00.0 .. 0.00.0 .. 0.00.0 .. 0.00 .. 00 .. 00.0 .. 0.01.40506 .. -682.1871.01573 .. 1.4619e-050.992105 .. 0.99960843 .. 120.0744668 .. 0.1315040.389466 .. 0.157042-0.179822 .. 0.00.360612 .. 0.015 .. 00.557592 .. 0.00.727285 .. 0.055303.8 .. 0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0 .. 0.00.0 .. 0.0

In [8]:
sdss_fns = ['decals_dr3/catalogs/sdss_comparison_{}.csv'.format(bnm) for bnm in bricknames]
sdss_catalogs = [Table.read(fn) for fn in sdss_fns]
sdss_catalogs[0]


Out[8]:
<Table length=1295>
OBJIDRADECPHOTPTYPEPHOT_SGFLAGSSATURATEDBAD_COUNTS_ERRORBINNED1ugrizu_errg_errr_erri_errz_errMODELMAGERR_UMODELMAGERR_GMODELMAGERR_RMODELMAGERR_IMODELMAGERR_ZEXTINCTION_UEXTINCTION_GEXTINCTION_REXTINCTION_IEXTINCTION_ZDERED_UDERED_GDERED_RDERED_IDERED_ZPETRORAD_UPETRORAD_GPETRORAD_RPETRORAD_IPETRORAD_ZPETRORADERR_UPETRORADERR_GPETRORADERR_RPETRORADERR_IPETRORADERR_ZDEVRAD_UDEVRADERR_UDEVRAD_GDEVRADERR_GDEVRAD_RDEVRADERR_RDEVRAD_IDEVRADERR_IDEVRAD_ZDEVRADERR_ZDEVAB_UDEVAB_GDEVAB_RDEVAB_IDEVAB_ZCMODELMAG_UCMODELMAGERR_UCMODELMAG_GCMODELMAGERR_GCMODELMAG_RCMODELMAGERR_RCMODELMAG_ICMODELMAGERR_ICMODELMAG_ZCMODELMAGERR_ZPSFMAG_UPSFMAGERR_UPSFMAG_GPSFMAGERR_GPSFMAG_RPSFMAGERR_RPSFMAG_IPSFMAGERR_IPSFMAG_ZPSFMAGERR_ZFIBERMAG_UFIBERMAGERR_UFIBERMAG_GFIBERMAGERR_GFIBERMAG_RFIBERMAGERR_RFIBERMAG_IFIBERMAGERR_IFIBERMAG_ZFIBERMAGERR_ZFRACDEV_UFRACDEV_GFRACDEV_RFRACDEV_IFRACDEV_ZQ_UU_UQ_GU_GQ_RU_RQ_IU_IQ_ZU_ZEXPAB_UEXPRAD_UEXPPHI_UEXPAB_GEXPRAD_GEXPPHI_GEXPAB_REXPRAD_REXPPHI_REXPAB_IEXPRAD_IEXPPHI_IEXPAB_ZEXPRAD_ZEXPPHI_ZFIBER2MAG_RFIBER2MAGERR_REXPMAG_REXPMAGERR_RPETROR50_RPETROR90_RPETROMAG_RSB_EXP_RSB_PETRO_RJJERRHHERRKKERRSPEC_ZSPEC_Z_ERRSPEC_Z_WARNPHOTOZPHOTOZ_ERR
int64float64float64int64str6int64int64int64int64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64int64int64int64float64float64
1237654897369154977118.247078281-1.227023626193GALAXY689879129600026843545625.8629522.2393321.7291521.6250421.404790.80414120.13154730.13399750.16553830.52720870.80414120.13154730.13399750.16553830.52720870.23402180.18234820.12614760.093741220.0697262425.6289322.0569821.60321.531321.335072.9695111.8967712.970042.9700342.560491-1000.00.3749135-1000.0-1000.02.4915750.00393286726.232610.67932640.89732870.4935440.59270070.23598181.813463.92837613.445960.052117810.050.38494640.074168250.0525.733880.899331622.197820.157647321.729150.171696121.837910.153836720.414820.54270825.555670.796948422.51740.129767122.038250.131559921.847560.148790721.622010.464187324.883291.14406322.748230.180633322.241650.195636122.241670.266045521.773380.64550190.01.01.00.00.92629170.008450190.2786115-0.01069896-0.029736970.02208714-0.09000418-1.787702-1.615481-0.48485150.48249120.10447680.007456085108.85910.27151580.7770585155.80670.37618930.4889817174.56540.068910820.00303396970.272170.052.139307119.761822.759710.208168921.824730.17017641.0428423.26285221.5128222.266638779323.59936250849999.09999.09999.09999.09999.09999.0-1-1-10.2114960.13205
1237654897369154899118.249599584-1.225827983453GALAXY2171644149760026843545621.27519.9979719.4715119.3158919.239030.17481810.025164810.025098910.029371120.10871330.17481810.025164810.025098910.029371120.10871330.23453390.18274720.12642370.093946340.0698788221.0404619.8152319.3450819.2219419.169152.4102152.5930423.091162.17612.2795872.2552550.11126420.4086880.17674120.4581361.3686562.2971321.0639250.22081431.4079510.191120.70817950.13599980.51562080.55704070.88721720.84876420.89719020.88645680.488314321.166840.239643620.001240.0251226119.331550.0252993919.464390.0290809519.499830.126195421.91320.191152220.680340.0299262320.254610.0291567520.049790.0328672919.849350.104751922.021610.219680920.711360.031154520.20830.027019420.05130.0311298119.970220.14202160.00.00.50200950.00.63376810.06026976-0.03484392-0.040682030.042976250.0021294540.02013103-0.021982210.006344133-0.07173451-0.060042170.89972781.13684394.193650.85566750.95809360.90860.84172870.971035519.527690.87133240.7325965.366660.43838040.66299586.1570220.839080.030655819.471510.025098911.337453.3194719.3780921.403131283722.00492720219999.09999.09999.09999.09999.09999.0-1-1-10.1096360.057952
1237654897369153597118.247861393-1.314942004156STAR352533952637640026843545624.4643719.3052118.6536718.373418.271541.0891670.011931540.010010610.010209320.029852921.0891670.011931540.010010610.010209320.029852920.20983280.16350030.11310870.084051910.0625191924.2545319.1417118.5405618.2893518.209022.9695111.3638611.1805131.2036641.235676-1000.00.02577640.015685360.022179510.067936411.372665144.0770.00040678940.038840887.346148e-060.00060066631.342521e-050.00060431140.00022944710.1138390.050.53088520.383470.76612820.655491924.310195.4963619.305470.0119313718.653670.0100106118.373410.0102092518.271490.0694857224.456081.06995519.289010.0162729618.626050.012303618.365780.0144232418.266230.0339005924.290451.11390819.596660.0148783518.980080.0136749118.699270.0140667918.580550.044553940.01.01.01.01.0-0.8053105-1.295537-0.041327570.01741553-0.03768306-0.01749143-0.03009168-0.01153127-0.059376270.0042463830.050.9635395131.07610.37454382.172031e-0543.368310.35631360.0003779473108.48270.79142460.0111.21380.37425910.000242968774.9619119.441390.0147415818.653760.010010630.59530761.13069218.812153.5363631115419.68131175169999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369153552118.24589145-1.319243581886STAR352533617090760026843545624.2655915.0084714.518514.3566214.319511.0456380.0033187040.0035227270.0036018580.0041756051.0456380.0033187040.0035227270.0036018580.0041756050.20689270.16120940.11152390.082874210.0616431824.0586914.8472614.4069714.2737514.257860.50780841.4015311.2865151.2487661.3109210.43917830.0081277470.0058191750.0083199780.0093874590.0784138287.896656.783858e-060.00024813372.457324e-050.00045513111.151923e-062.809872e-050.06498150.0077219540.10698840.5101370.77649180.85221360.98674324.258564.57347615.008360.00331871314.51850.00352272714.356610.0036017814.315980.00435359524.210651.00430814.988130.0119263914.508360.00829802914.350360.0110688414.341520.0183322724.518061.16085215.320220.0016716614.850510.00166488414.695290.00182521514.667690.0032695040.00.00.00.01.0-1.6431661.629536-0.040751180.02180521-0.03003038-0.01564603-0.037232730.0002001926-0.05630317-0.0016027670.10994520.166429278.040310.51395820.00371114979.236570.66541583.654279e-0572.223370.69985820.000194523877.016360.99516990.0710331175.6539815.331270.0018673814.51850.0035227270.65521221.43489914.568-5.6720459622215.645358314213.4420.02413.1050.02213.0440.029-1-1-1-1.0-1.0
1237654897369153579118.24922249-1.322550103436STAR352533952637640026843545624.9584117.5381417.125316.9821516.942571.0400250.0051558560.0050482380.0053427870.011879351.0400250.0051558560.0050482380.0053427870.011879350.2057260.16030030.1108950.082406870.0612955724.7526917.3778417.014416.8997516.881272.9695111.3956091.2712391.2353571.267248-1000.00.0094013560.0084427790.0078471480.025503110.03298118349.1440.0014356050.024916660.00.00.00.00.026329210.11136980.050.61020460.7102520.849940.644415324.958226.01795917.538390.0051559117.12530.00504823816.982220.00534275516.93840.021528424.97061.02677817.516440.0124819217.112740.00897397816.972780.0116654216.943240.0210116924.375271.12917517.842540.00482200117.447530.00480359617.309460.00535522817.270070.015215341.01.01.00.00.00.61925510.5009064-0.037810460.02263901-0.02509648-0.01508288-0.03069437-0.00130157-0.05555118-0.010332590.050.00195617979.687160.50851660.0019453943.835820.59938240.073.344220.68854740.000190933276.27030.71337370.03178654106.641717.930250.00551477617.125390.005048240.65136311.45339317.17967-32.874607086218.244235879216.1810.0915.8930.1614.9539999.0-1-1-1-1.0-1.0
1237654897369153620118.244800607-1.317025365513GALAXY1232486516656840026843545624.0052917.9340117.4775516.9412616.710332.9114970.0094791320.0093957730.0078691320.022878422.9114970.0094791320.0093957730.0078691320.022878420.20793620.16202240.11208640.083292190.0619540923.7973517.7719917.3654616.8579716.648382.9695116.9873296.2440276.2821625.776903-1000.03.5979483.2569943.2121133.0417180.008528828400.230211.423190.56586078.7065810.3876468.4092480.25525117.6181440.83296670.050.35101630.30987080.37570240.316715524.066434.09312917.677920.00930447617.437560.00950881116.760920.0080572616.646920.0232284123.9480.898719119.807091.1874319.319461.33433218.788580.755811218.511310.442616124.435641.15099219.558421.0728118.956141.18052118.467430.708440718.234060.42608281.00.00.065360740.22484950.1578841-0.1659850.405209-0.25061450.1457786-0.28344210.1551964-0.25009990.1559195-0.2550870.18146780.067813050.00990782544.885090.4099874.52789672.581960.36452933.56558670.956150.38417933.72166571.337540.34711153.58654171.1815919.685361.54044717.477550.0093957742.6670535.10303217.5083122.233650996921.633914197916.4880.17415.790.21515.0630.187-1-1-10.08270.039472
1237654897369154970118.242764552-1.288817508726STAR1056221043103600026843545622.3548520.490219.465619.1246518.892310.29116930.026482370.01719710.016899020.050231560.29116930.026482370.01719710.016899020.050231560.22086570.17209710.11905590.088471330.0658064222.1339920.3181119.3465519.0361818.82651.7162051.3508058.5864361.2117651.3875061.5863080.055900512.2641760.05184140.18052430.93045241.6087810.00011726240.023539020.13194340.032906480.00063045890.038766620.064033580.13601980.050.95353460.31037050.88392870.159703722.214740.303913220.51860.0264354119.465640.017197119.157220.0168524118.921570.0614668522.405920.286962620.516850.0253689619.514690.0183293319.160190.0203612918.93520.0547622622.426480.312065320.841050.0248157319.812020.0246035819.494160.0276073419.234230.081360340.00.01.00.01.02.8293380.378451-0.07545092-0.07318318-0.01528645-0.030629560.11969360.06498184-0.5773424-0.037542840.070801290.531285968.767210.93704860.000266801115.71480.45520570.1776159110.10230.97161950.000624884369.099660.15127730.1122743104.59920.313050.0269059519.472380.017199363.46013215.2484618.6273317.715240051823.31824401189999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369154971118.241445419-1.290119540776STAR352555076160160026843545623.9923724.3689121.7970520.5609919.662111.1315340.68351980.13702550.061601670.11298291.1315340.68351980.13702550.061601670.11298290.22000690.17142790.1185930.088127310.0655505323.7723724.1974821.6784620.4728619.596562.9695112.9694821.5262361.1821152.942141-1000.0-1000.00.23394180.12599651.8924710.002361048116.75350.00421352595.222030.42055950.67804310.080744330.1298640.25040580.35432590.099579610.050.3152760.14823940.356679324.025613.55952324.437812.21549521.798220.189773620.724780.0729834219.762580.156226423.973750.924512124.414250.579263422.042070.192372420.729220.089938619.882130.116931724.747061.17041823.57010.208784321.853810.201443120.971320.140860819.976050.15390591.01.00.92994451.00.6562214-0.5300492-1.5147290.22472510.8800149-0.001044165-0.03512454-0.027331440.0148055-0.1775963-0.14998970.098344860.001537385137.20930.050.00312765150.980520.54991540.482264755.794670.050.1448551160.01710.49565690.298341185.7593122.3940.219869521.813930.18914870.71158361.207622.0526122.225811491923.30918767419999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369154972118.243907852-1.288068088846STAR1056221378649760026843545623.7486924.4502321.9262420.819120.382910.87207550.62004320.13232630.06625760.18201290.87207550.62004320.13232630.06625760.18201290.2214670.17256560.11938010.088712190.0659855723.5272224.2776721.8068620.7303920.316920.55445322.9694821.2214921.183812.8134690.4383122-1000.00.31987570.24766211.7779610.0403133610.339760.0148227135.906330.13397580.3385230.078613330.35462220.0003047880.48452290.056300170.050.086731110.12967120.399658923.733590.90579124.452330.596120621.926240.132326320.848210.0778336520.422580.214760723.565210.729117224.408680.517391321.981870.136629620.861190.0651297620.411530.175145223.973480.999010424.350580.450098622.132960.19336321.11660.101250720.766330.29267281.01.00.01.01.00.14358030.29578720.1397221-0.842049-0.23874-0.1502241-0.0109468-0.02980741-0.1354765-0.22788260.051015010.0188155958.548790.054877210.509841249.547020.16634920.24149698.155960.20001020.132203447.358330.44217320.00110517291.1666822.687010.212786521.926240.13232630.56035081.25746122.1459520.836236322422.88369819939999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369154982118.246765848-1.290016730523GALAXY689879127040026843545622.9254422.3615520.5737219.777219.599020.55201380.1449860.048624390.032887730.11077960.55201380.1449860.048624390.032887730.11077960.22156880.17264490.11943490.088752960.0660158922.7038722.1889120.4542819.6884519.533013.5091751.5299663.2164321.4304874.0152383.407260.420680.57134230.73164460.701929429.6480365.619510.1173930.52925530.38032770.11979120.20789380.067864640.61782080.5191130.050.15036560.74658260.24422070.413616820.479010.392431322.550260.14182320.60790.0487267219.960360.0324922119.563670.118018323.1480.531470522.579290.13750820.855350.0475893620.03480.0324158719.876610.10867923.114850.555848822.88880.205462921.096650.0706794720.317190.0479913220.152810.16772841.00.00.77014750.00.25062530.61279130.26292540.085572380.1128371-0.1184212-0.022558430.1124729-0.01519521-0.01241793-0.1369630.14788166.595054120.95440.050.179926184.3940.73346810.274595475.249730.14970360.26308232.3268140.35673390.6672947150.937721.63070.0778557720.732940.048716662.1685615.84417619.9648419.92185838123.64114780319999.09999.09999.09999.09999.09999.0-1-1-10.4554040.051486
.................................................................................................................................................................................................................................................................................................................................................................................................................................
1237654897369023417118.045097879-1.263179140916STAR689879127040026843545622.1516619.8205318.9500218.6336118.407580.24769540.016407260.011782420.012288990.032600540.24769540.016407260.011782420.012288990.032600540.17036610.13274810.091834550.068242910.0507601921.9812919.6877818.8581818.5653718.356821.9339041.4726981.3180231.2715631.3510031.7564610.051511130.034690310.032181511.6042661.1194491.397350.059595690.099575680.022331090.072955440.078698550.019449030.11799650.10780690.050.46824770.87252780.31812120.123435121.891170.243918519.819490.0164047918.950020.012139218.628240.0122856118.387420.0328514422.160690.240252919.826650.0190697318.958820.0138556918.648650.015894318.420590.0341294822.566670.360326720.141340.0203334119.300140.0148027518.986090.0164076318.744030.048027560.00.00.00.01.0-0.139907-0.1394677-0.0098652870.02574882-0.04573389-0.005705144-0.06507761-0.02450607-0.11740120.02439860.050.8568773121.42390.34994590.0932566248.889820.90596930.0264803673.821850.399910.1274687105.76070.20020110.163631178.7080319.782520.0163338118.950020.01213920.66891081.44532519.0111613.060084808720.13345442699999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369088822118.136921461-1.24471070153GALAXY2639539261934240026843545621.3853220.3492520.1688419.8368719.503630.25751040.045692710.058622240.060038130.18105380.25751040.045692710.058622240.060038130.18105380.2098510.16351450.11311850.08405920.062524621.1754720.1857420.0557219.7528119.44114.0662674.1755977.3580014.5963344.4984423.9281990.5059366-1000.00.50254994.3523563.4347924.645389.2318942.6220515.0972672.0102858.8536411.29220311.5738413.348730.050.11697310.10743730.10682920.345924621.358280.290853320.225470.0455727820.168850.0586222419.533930.0589908919.097240.194029822.298980.273420221.732720.0646440921.41170.0752339721.218330.106786121.021270.290761922.540390.346509221.590770.0668616521.325710.0835535821.100150.0848176620.767720.28769550.87695040.00.00.00.0-12.492590.5693535-0.5383713-0.4415983-0.5854459-0.6068316-0.5646612-0.2516552-0.380946-0.15350030.052.21566119.40030.20163133.098881117.08490.17137782.737357114.64230.19052093.770541111.17980.48375892.929582119.345422.002120.104034920.168850.058622241.5202543.61161220.3801924.350953305223.28521654849999.09999.09999.09999.09999.09999.0-1-1-10.2677910.143009
1237654897369088823118.137721952-1.245685890366STAR3167283703974560026843545625.0966525.2550924.2656722.0906421.912411.0744360.68841820.76014260.19429620.59913891.0744360.68841820.76014260.19429620.59913890.20979310.16346930.11308730.084036010.0625073524.8868625.0916224.1525822.0066121.84992.9692582.9697152.9694850.95620890.5804913-1000.0-1000.0-1000.00.15094060.43099820.01406932262.68567.038354e-057.1307441.36781449.654790.088586821.3786960.000546078611.558470.054238010.10496640.050.074364160.193971425.095393.25568125.256691.97443923.935712.53748222.090590.39929321.910051.74354525.108921.04049525.277470.774193724.313830.821911922.119230.200492721.844860.583736824.802551.16993324.054030.627096123.305470.528324222.039450.143144321.621020.61675240.00.00.00.01.00.0003942935-0.3514509-0.2900159-1.761634-0.78724250.7367491-0.1273569-0.054676670.2085299-0.17329240.056588340.0207880570.285890.21077270.000352284679.430290.051.04602977.319920.33018140.157326472.288190.10662180.05264749163.657723.873420.535590523.935712.5374820.74043740.95569124.2754326.028883701325.61832604159999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369088065118.101103699-1.245996031376STAR722335505272056520026843545624.7491922.9383620.0268719.3210220.399531.140310.19178580.025345140.019056830.17607731.140310.19178580.025345140.019056830.17607730.19744950.15385130.10643360.079091590.0588296224.5517422.7845119.9204419.2419320.34072.9692580.68740571.1700151.2791660.630685-1000.00.14488420.55496260.60507560.14310570.03959010.083992480.002084962.5831940.00024910540.045328860.016678162.0910650.0023542082.8372420.050.050.38093060.084230420.0524.74857.66664322.938180.191758820.026870.0283220519.320550.0190565120.399530.176072824.685451.1276522.746550.145291120.020790.534316719.300320.545156320.206680.143231525.215181.04251321.699180.0518607820.324920.854222719.527770.470254619.341170.080957141.01.01.01.01.0-1.295392-1.015359-0.35358930.1703223-0.06742474-0.0092302390.065935930.11527050.0027715220.75768320.050.224376722.600820.050.00101608998.284430.27778690.0008387903108.1350.050.0246734478.18530.050.002046867105.625420.797220.879556520.026950.028320630.61210631.17295920.194546.6406694682721.12412020969999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369088944118.104393836-1.282283384396STAR2815439647582720026843545623.1862523.1240221.5500921.2114921.041490.61534740.23437670.094125160.094562660.32359780.61534740.23437670.094125160.094562660.32359780.1841460.14348530.099262480.073762660.0548658723.0021122.9805321.4508321.1377320.986631.2906812.9697151.3126651.3247891.9985021.163989-1000.00.16690370.17760.97905092.2090647.6662960.88234621.8874640.30307160.23509140.12208270.14509921.3468264.2870830.050.050.34999750.83729630.0999751522.457380.634127422.82620.391086821.509320.105708821.211430.0945627220.51810.399481123.053390.514049823.199020.229452821.63940.0853572921.306790.0919391921.150710.324090523.422280.718409123.349640.311415321.968250.0871096121.648150.159322721.163730.40362651.00.00.00.00.02.331581-0.9865562-0.53311050.4158979-0.013690580.023518950.030364510.004847309-0.048099230.070560250.051.546906158.20070.050.91247748.549920.67588810.29869062.5481520.99967490.1959048103.7630.25001591.285294106.552122.428160.0905620421.509320.10570880.63735191.03266921.7825620.880878350922.79990443589999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369088719118.100854482-1.269177385626STAR689879124480026843545622.4906221.8102720.286919.3066118.738860.33245780.072790740.030835740.018882050.042914640.33245780.072790740.030835740.018882050.042914640.18667860.14545870.10062770.074777150.0556204622.3039421.6648120.1862819.2318318.683242.9692581.357191.3464911.2077131.143425-1000.00.20073490.093876180.037695331.2411421.2747723.8550250.29388080.30009270.065306360.081117010.0091505180.090361350.00.00.050.050.26597140.65132640.749582921.96840.394551221.722870.0771128320.286890.0325472519.313850.0207100118.746890.0521164222.469860.315650821.829120.0703943620.297060.0302986619.309690.0196433518.736320.0425287622.747370.41766622.138030.107927120.650570.0457972819.667950.0277359519.130860.067397021.00.00.01.01.00.205488-0.015207180.06925758-0.02711638-0.05780699-0.01577308-0.04121793-0.007996464-0.033738750.029988520.051.058483156.51680.053221130.383008794.177830.34991480.102218785.148810.48693720.001395963110.32110.67469157.912994e-0779.5507121.123610.0482692920.286890.032547250.65976331.34488520.3704817.329996283721.46287014289999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369023409118.042380968-1.304592787396STAR689880440320026843545626.3832218.4255918.0761817.9390917.911510.43506260.007397840.0072584350.0081880990.022516620.43506260.007397840.0072584350.0081880990.022516620.16476020.12838010.088812730.065997380.0490899326.2184618.2972117.9873717.8730917.862422.9700061.3735511.3056441.2345441.30484-1000.00.010990950.016222760.013687210.16027736.386959e-070.00.017428681.359638e-051.622142e-050.0057394588.124935e-050.0032751080.07973490.038551280.050.79762490.6000010.63929610.0526.383370.435087318.423090.00739748718.076170.00725843317.938810.00818810417.897870.0225096326.218470.974410118.428980.0135988818.074850.0108514117.934530.0134357317.915480.0258446725.881180.887167918.747540.00763384218.425810.00576883218.282850.00943420718.265310.032163981.01.00.01.00.00.02241717-0.5701798-0.031607810.01722801-0.05774481-0.02627584-0.05782028-0.01113996-0.12043440.042200860.052992990.0222168648.233510.85330280.0253833545.404270.16652541.354817e-0571.985750.56104042.775239e-0573.999150.14010290.131083579.0052318.904310.006376818.076170.0072584330.66119461.43377418.14194-4.2689751866519.23903520249999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369089062118.132238795-1.24748703053GALAXY2815439647541760026843545622.4230626.1063822.8499822.4011219.935290.45045050.72788270.42136670.39212470.1796810.45045050.72788270.42136670.39212470.1796810.20735130.16156670.11177110.08305790.0617798222.2157125.9448222.7382122.3180619.8735111.303592.9697151.0075711.0160511.580128-1000.0-1000.00.85150170.088619930.457701623.7909961.007340.18945621.867660.2360111.5020240.22935471.5739161.1758061.3041210.050.93986230.057168520.097137480.0520.966090.425827825.991980.710940323.088270.378537522.177850.224496219.935260.184416323.045220.515127725.716780.578353223.256610.37171422.240330.206172720.475040.181466623.09420.553737225.616420.729647624.020690.783353622.964020.490579620.796360.29465590.53315280.00.01.01.0-0.2759318-0.3445472-0.34981570.06910851-1.205224-0.42172861.1127941.063654-0.2525961-0.18784580.052.241134112.570.98937030.3789756175.08040.050.4720558111.44160.1097640.0002991902121.85970.051.008499117.580524.041330.529561623.088270.3785375-9999.0-9999.027.9519423.453684745149.94717114199999.09999.09999.09999.09999.09999.0-1-1-1-9999.0-9999.0
1237654897369024168118.050669241-1.304026941326STAR176611740879360026843545625.8654522.7920621.0120219.6258318.861950.71550270.18635350.059760030.026805610.050327080.71550270.18635350.059760030.026805610.050327080.16557010.12901110.089249250.066321760.049331225.6998822.6630520.9227819.5595118.812622.9700062.9698621.3995291.1419481.489609-1000.0-1000.00.20806490.057341170.46673920.0289685931.635240.23527220.73866120.23570950.26583870.00033976390.069200920.089021120.20936320.050.32688460.050.10527090.199496925.767830.917433522.781320.18648721.012020.0729038719.699990.0265695118.925970.0732342925.600550.806638822.837570.174603221.104090.0579625919.697720.0262433218.942730.0498315925.18791.0799723.160860.268868821.434870.0918745520.083430.0273148619.28480.077720750.01.01.01.00.823863-0.4972876-0.3706821-0.089207610.06995902-0.178389-0.06530335-0.06330573-0.0154266-0.12572190.0042261650.050.01867808129.08830.14479760.157440854.417460.050.315461100.80810.33751660.01762093107.32650.34406590.136876797.642221.91150.0958495921.023290.072410690.68669781.42511221.1485220.513464935822.32779950319999.09999.09999.09999.09999.09999.0-1-1-1-1.0-1.0
1237654897369088180118.140749741-1.228581562596STAR352533601362080026843545617.9440216.6597316.2152616.0413315.97990.012372920.0041086810.0040146170.0042618010.0070737150.012372920.0041086810.0040146170.0042618010.0070737150.21712050.16917890.11703710.086971150.0646905517.726916.4905516.0982215.9543615.915211.571881.3286271.3214241.2217961.2631280.023256790.0081716230.0079340530.0060233770.014769370.068044570.046618020.0014593120.012651910.013386990.019985910.0064443640.0090999040.00048107820.016825050.28602740.77282390.74761840.99972010.656502417.940910.014062416.659770.00410872516.214870.00401462116.040840.0042617415.980190.0079423717.942470.0159070416.661660.00844413316.222320.00997711616.047620.0101956815.977950.0159000718.272050.0113303716.972010.00280106516.561820.00197506916.385190.00206323416.32790.0072837630.00.91436720.88413940.93998721.0-0.03283546-0.03079703-0.034558360.03145947-0.03873882-0.01921973-0.03194009-0.008872885-0.089330780.016705160.10027950.1208358111.74910.78423150.00342809245.405890.71682910.00512526672.860890.99972580.00849114475.85390.4727390.001263327110.802217.046170.00232711516.215260.0040146180.66744671.4861916.263996.7592891831617.381526944415.1610.04914.8060.04814.6130.106-1-1-1-1.0-1.0

In [9]:
bricks = Table.read('decals_dr3/survey-bricks.fits.gz')
bricksdr3 = Table.read('decals_dr3/survey-bricks-dr3.fits.gz')

Populate additional DECALS info


In [10]:
A0p5 = 2.5*np.log10(np.pi*(0.5)**2)
A0p75 = 2.5*np.log10(np.pi*(0.75)**2)
A1 = 2.5*np.log10(np.pi*(1.)**2)

for dcat in decals_catalogs:
    dcat['g'] = np.array(22.5 - 2.5*np.log10(dcat['decam_flux'][:, 1]))*u.mag
    dcat['r'] = np.array(22.5 - 2.5*np.log10(dcat['decam_flux'][:, 2]))*u.mag
    dcat['z'] = np.array(22.5 - 2.5*np.log10(dcat['decam_flux'][:, 4]))*u.mag
    
    dcat['sb_r_0.5'] = np.array(22.5 - 2.5*np.log10(dcat['decam_apflux'][:, 2, 0]) + A0p5)*u.mag * u.arcsec**-2
    dcat['sb_r_0.75'] = np.array(22.5 - 2.5*np.log10(dcat['decam_apflux'][:, 2, 1]) + A0p75)*u.mag * u.arcsec**-2
    dcat['sb_r_1'] = np.array(22.5 - 2.5*np.log10(dcat['decam_apflux'][:, 2, 2]) + A1)*u.mag * u.arcsec**-2


/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:6: RuntimeWarning: divide by zero encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:6: RuntimeWarning: invalid value encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:7: RuntimeWarning: divide by zero encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:7: RuntimeWarning: invalid value encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:8: RuntimeWarning: divide by zero encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:8: RuntimeWarning: invalid value encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:10: RuntimeWarning: divide by zero encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:10: RuntimeWarning: invalid value encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:11: RuntimeWarning: divide by zero encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:11: RuntimeWarning: invalid value encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:12: RuntimeWarning: divide by zero encountered in log10
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:12: RuntimeWarning: invalid value encountered in log10

deep_r brick


In [11]:
dcat = decals_catalogs[0]
scat = sdss_catalogs[0]
bricknm = bricknames[0]

bricksdr3[bricknm==bricksdr3['brickname']]


Out[11]:
<Table length=1>
bricknameradecnexp_gnexp_rnexp_znexphist_g [6]nexphist_r [6]nexphist_z [6]nobjsnpsfnsimpnexpndevncomppsfsize_gpsfsize_rpsfsize_zebvtrans_gtrans_rtrans_z
str8float64float64int16int16int16int32int32int32int16int16int16int16int16int16float32float32float32float32float32float32float32
1181m012118.125-1.253313891931 .. 024748 .. 114953451043190 .. 0780959026421020217281.251821.311611.009610.04775040.8681850.9091760.948134

In [12]:
plt.scatter(dcat['ra'], dcat['dec'], lw=0, c='g')
plt.scatter(scat['RA'], scat['DEC'], lw=0, c='r')


Out[12]:
<matplotlib.collections.PathCollection at 0x115ab5790>

For unclear reasons, all of the SDSS fields near the deep-r area seem to be problematic somehow. Forging ahead, but probably not a good idea to dig into SDSS areal completeness too much here

Lets have a look at the relative depth of SDSS vs. DECALS


In [13]:
plt.hist(scat['r'], bins=50, histtype='step', range=(15, 25), label='SDSS (Nx3)', weights=[3]*len(scat))
plt.hist(dcat['r'], bins=50, histtype='step', range=(15, 25), label='DECALS')
plt.legend(loc=0)
plt.xlabel('mag')


/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/numpy/lib/function_base.py:583: RuntimeWarning: invalid value encountered in greater_equal
  keep = (tmp_a >= mn)
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/numpy/lib/function_base.py:584: RuntimeWarning: invalid value encountered in less_equal
  keep &= (tmp_a <= mx)
Out[13]:
<matplotlib.text.Text at 0x114938650>

Note that the relative numbers are boosted here for SDSS because of the areal coverage effect visible above. But it's clear that the magnitude limit is at least 3 deeper for DECALS.


In [14]:
points_depth_mag = -2.5*(np.log10(5*dcat['decam_depth']**-0.5)-9)

plt.hist(points_depth_mag[:, 2], bins=100, range=(22, 25.5), histtype='step', label='r')
plt.hist(points_depth_mag[:, 1], bins=100, range=(22, 25.5), histtype='step', label='g')
plt.xlabel(r'DECAM $5\sigma$ depth [mag]')
plt.legend()


/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:1: RuntimeWarning: divide by zero encountered in power
  if __name__ == '__main__':
Out[14]:
<matplotlib.legend.Legend at 0x119131350>

And this confirms that the typical depth for DECAM is ~2-3 mags below the SDSS

Now lets find matches between the SDSS and DECALS datasets


In [15]:
ssc = SkyCoord(scat['RA'], scat['DEC'], unit=u.deg)
dsc = SkyCoord(dcat['ra'], dcat['dec'], unit=u.deg)

idx, d2d, _ = dsc.match_to_catalog_sky(ssc)

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(d2d.arcsec, bins=100, histtype='step', range=(0, 3), log=True)
ax2.hist(d2d.arcsec, bins=100, histtype='step', range=(0, 30), log=True)


idx, d2d, _ = ssc.match_to_catalog_sky(dsc)

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(d2d.arcsec, bins=100, histtype='step', range=(0, 3), log=True)
ax2.hist(d2d.arcsec, bins=100, histtype='step', range=(0, 30), log=True)
None


OK, looks like all the w/i ~1" matches are real, and essentially everything has a match from the SDSS


In [16]:
dmatch = dcat[idx[d2d<1*u.arcsec]]
smatch = scat[d2d<1*u.arcsec]

plt.axhline(0, c='k')
plt.scatter(dmatch['r'], smatch['r']- dmatch['r'], lw=0)
plt.ylim(-1, 1)
plt.xlabel(r'$r_{\rm DECALS}$', fontsize=18)
plt.ylabel(r'$r_{\rm SDSS} - r_{\rm DECALS}$', fontsize=18)
plt.xlim(10, 24)


Out[16]:
(10, 24)

OK, so there's a small flux offset, probably due to different flux definitions, but probably not a big systematic effect. Lets press on.

Look for low-SB objects in SDSS


In [17]:
starmsk = smatch['PHOT_SG']=='STAR'

plt.scatter(smatch['r'][starmsk], smatch['SB_PETRO_R'][starmsk], lw=0, c='r', alpha=.5, label='star')
plt.scatter(smatch['r'][~starmsk], smatch['SB_PETRO_R'][~starmsk], lw=0, c='b', alpha=.5, label='gal')
plt.legend(loc='upper left')
plt.xlim(10, 24)
plt.ylim(15, 28)
plt.axvline(21, c='k')
plt.xlabel(r'$r_{\rm SDSS}$', fontsize=18)
plt.ylabel(r'$SB_{\rm SDSS}$', fontsize=18)


Out[17]:
<matplotlib.text.Text at 0x11b59ced0>

The vertical line is the typical SAGA cutoff of r~21

Look for low-SB objects in DECALS


In [18]:
fig, (ax1,ax2) = plt.subplots(2, 1)

starmsk_match = dmatch['type']=='PSF '

ax1.scatter(dmatch['r'][starmsk_match], dmatch['sb_r_0.5'][starmsk_match], lw=0, c='r', alpha=.5, label='star')
ax1.scatter(dmatch['r'][~starmsk_match], dmatch['sb_r_0.5'][~starmsk_match], lw=0, c='b', alpha=.5, label='gal')
ax1.legend(loc='lower right')

starmsk = dcat['type']=='PSF '

plt.scatter(dcat['r'][starmsk], dcat['sb_r_0.5'][starmsk], lw=0, c='r', alpha=.5)
plt.scatter(dcat['r'][~starmsk], dcat['sb_r_0.5'][~starmsk], lw=0, c='b', alpha=.5)

for ax in (ax1, ax2):
    ax.set_xlim(13, 25)
    ax.set_ylim(15, 28)
    ax.axvline(21, c='k')
    ax.axhline(24.5, c='k', ls=':')
    ax.set_xlabel(r'$r_{\rm DECALS}$', fontsize=18)
ax1.set_ylabel(r'$SB_{\rm DECALS}$, in SDSS', fontsize=18)
ax2.set_ylabel(r'$SB_{\rm DECALS}$, all', fontsize=18)


Out[18]:
<matplotlib.text.Text at 0x11a8c3e50>

The horizontal line here is to guide the eye: it's a limit above which there's nothing in the SDSS that DECALS says is that low SB (at least to our r<21 cutoff).

But there are some things at very low DECAM SB that aren't showing up in the SDSS X-match... lets see what they are.


In [19]:
to_check = (dcat['r']<21)&(dcat['sb_r_0.5']>24.5)

de_cutout_url = 'http://legacysurvey.org/viewer/jpeg-cutout/?ra={0.ra.deg}&dec={0.dec.deg}&layer=decals-dr3&pixscale=0.1&bands=grz'
sd_cutout_url = 'http://legacysurvey.org/viewer/jpeg-cutout/?ra={0.ra.deg}&dec={0.dec.deg}&layer=sdssco&pixscale=0.1&bands=gri'

tabrows = []
for row in dcat[to_check]:
    sc = SkyCoord(row['ra'], row['dec'], unit=u.deg)
    objstr = '{}_{}<br>RA={:.4f}<br>Dec={:.4f}<br>r={:.2f}<br>sb={:.2f}'.format(row['brickid'], row['objid'], row['ra'], row['dec'], row['r'], row['sb_r_0.5'])
    deimg = '<img src="{}">'.format(de_cutout_url.format(sc))
    sdimg = '<img src="{}">'.format(sd_cutout_url.format(sc))
    tabrows.append('<tr><td>{}</td><td>{}</td><td>{}</td></tr>'.format(objstr, deimg, sdimg))
    
display.HTML("""
<table>

<tr>
<th>obj</th>
<th>DECALS</th>
<th>SDSS</th>
</tr>

{}
</table>
""".format('\n'.join(tabrows)))


/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:1: RuntimeWarning: invalid value encountered in less
  if __name__ == '__main__':
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:1: RuntimeWarning: invalid value encountered in greater
  if __name__ == '__main__':
Out[19]:
obj DECALS SDSS
323640_562
RA=118.1649
Dec=-1.3645
r=16.08
sb=inf
323640_678
RA=118.1122
Dec=-1.3624
r=20.08
sb=27.24
323640_793
RA=118.0085
Dec=-1.3593
r=18.50
sb=inf
323640_993
RA=118.0738
Dec=-1.3506
r=19.64
sb=26.22
323640_1072
RA=118.0088
Dec=-1.3517
r=18.38
sb=inf
323640_2925
RA=117.9936
Dec=-1.2905
r=19.00
sb=inf
323640_2942
RA=118.0932
Dec=-1.2940
r=19.75
sb=25.98
323640_2945
RA=118.0879
Dec=-1.2876
r=19.74
sb=26.97
323640_4309
RA=117.9936
Dec=-1.2524
r=20.04
sb=inf
323640_4805
RA=118.1493
Dec=-1.2384
r=20.11
sb=25.90
323640_4806
RA=118.1459
Dec=-1.2362
r=20.82
sb=26.37
323640_4808
RA=118.1506
Dec=-1.2376
r=19.04
sb=25.49
323640_5265
RA=118.2562
Dec=-1.2184
r=12.43
sb=inf
323640_5272
RA=118.2538
Dec=-1.2155
r=18.37
sb=25.71
323640_5654
RA=117.9937
Dec=-1.2171
r=20.74
sb=inf
323640_6111
RA=118.2564
Dec=-1.1972
r=19.65
sb=inf
323640_6167
RA=118.1666
Dec=-1.1940
r=19.02
sb=inf
323640_6226
RA=118.0814
Dec=-1.1897
r=20.24
sb=25.39
323640_6317
RA=118.1725
Dec=-1.1893
r=16.21
sb=inf
323640_6335
RA=118.0917
Dec=-1.1879
r=19.68
sb=27.45
323640_6412
RA=118.2184
Dec=-1.1800
r=20.75
sb=24.97
323640_6456
RA=118.1675
Dec=-1.1878
r=19.27
sb=25.91
323640_6558
RA=118.0777
Dec=-1.1840
r=20.13
sb=25.23
323640_7421
RA=118.1221
Dec=-1.1568
r=20.91
sb=25.90

Aha - looks like they are all tractor/catalog failures rather than real low-SB objects.

The lone suspicious ones are:

  • 323640_6335: this is a faint/low SB object, but it might be mis-centered in SB, and the flux is definitely too high (i.e., it's r>21)
  • 323640_7421: this is probably due to bright-star contamination, either an optical effect or due to the faint fuzz around it. It looks like the real mag is probably below 21

deep_g brick


In [20]:
dcat = decals_catalogs[1]
scat = sdss_catalogs[1]
bricknm = bricknames[1]

bricksdr3[bricknm==bricksdr3['brickname']]


Out[20]:
<Table length=1>
bricknameradecnexp_gnexp_rnexp_znexphist_g [6]nexphist_r [6]nexphist_z [6]nobjsnpsfnsimpnexpndevncomppsfsize_gpsfsize_rpsfsize_zebvtrans_gtrans_rtrans_z
str8float64float64int16int16int16int32int32int32int16int16int16int16int16int16float32float32float32float32float32float32float32
2208m005220.875-0.524161375 .. 11801698501 .. 11800518947 .. 1176345466934530977991172231.609591.483081.230490.04027660.8876060.9228270.956071

In [21]:
plt.scatter(dcat['ra'], dcat['dec'], lw=0, c='g')
plt.scatter(scat['RA'], scat['DEC'], lw=0, c='r')


Out[21]:
<matplotlib.collections.PathCollection at 0x1192249d0>

For unclear reasons, all of the SDSS fields near the deep-r area seem to be problematic somehow. Forging ahead, but probably not a good idea to dig into SDSS areal completeness too much here

Lets have a look at the relative depth of SDSS vs. DECALS


In [22]:
plt.hist(scat['r'], bins=50, histtype='step', range=(15, 25), label='SDSS', weights=[1]*len(scat))
plt.hist(dcat['r'], bins=50, histtype='step', range=(15, 25), label='DECALS')
plt.legend(loc=0)
plt.xlabel('mag')


Out[22]:
<matplotlib.text.Text at 0x11ca38ed0>

Unlike deep_r, here there is no areal twiddle-factor because the coverage is almost the same (there's a tiny bit more in DECALS for unclear reasons, but that's mostly in the noise). That confirms the result before that the magnitude limit is quite a bit deeper for DECALS.


In [23]:
points_depth_mag = -2.5*(np.log10(5*dcat['decam_depth']**-0.5)-9)

plt.hist(points_depth_mag[:, 2], bins=100, range=(22, 25.5), histtype='step', label='r')
plt.hist(points_depth_mag[:, 1], bins=100, range=(22, 25.5), histtype='step', label='g')
plt.xlabel(r'DECAM $5\sigma$ depth [mag]')
plt.legend()


/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:1: RuntimeWarning: divide by zero encountered in power
  if __name__ == '__main__':
Out[23]:
<matplotlib.legend.Legend at 0x11a2b1390>

And this confirms that the typical depth for DECAM is ~1-2 mags below the SDSS

Now lets find matches between the SDSS and DECALS datasets


In [24]:
ssc = SkyCoord(scat['RA'], scat['DEC'], unit=u.deg)
dsc = SkyCoord(dcat['ra'], dcat['dec'], unit=u.deg)

idx, d2d, _ = dsc.match_to_catalog_sky(ssc)

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(d2d.arcsec, bins=100, histtype='step', range=(0, 3), log=True)
ax2.hist(d2d.arcsec, bins=100, histtype='step', range=(0, 30), log=True)


idx, d2d, _ = ssc.match_to_catalog_sky(dsc)

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(d2d.arcsec, bins=100, histtype='step', range=(0, 3), log=True)
ax2.hist(d2d.arcsec, bins=100, histtype='step', range=(0, 30), log=True)
None


OK, looks like all the w/i ~1" matches are real, and essentially everything has a match from the SDSS


In [25]:
dmatch = dcat[idx[d2d<1*u.arcsec]]
smatch = scat[d2d<1*u.arcsec]

plt.axhline(0, c='k')
plt.scatter(dmatch['r'], smatch['r']- dmatch['r'], lw=0)
plt.ylim(-1, 1)
plt.xlabel(r'$r_{\rm DECALS}$', fontsize=18)
plt.ylabel(r'$r_{\rm SDSS} - r_{\rm DECALS}$', fontsize=18)
plt.xlim(10, 24)


Out[25]:
(10, 24)

OK, so there's a small flux offset, probably due to different flux definitions, but probably not a big systematic effect. Lets press on.

Look for low-SB objects in SDSS


In [26]:
starmsk = smatch['PHOT_SG']=='STAR'

plt.scatter(smatch['r'][starmsk], smatch['SB_PETRO_R'][starmsk], lw=0, c='r', alpha=.5, label='star')
plt.scatter(smatch['r'][~starmsk], smatch['SB_PETRO_R'][~starmsk], lw=0, c='b', alpha=.5, label='gal')
plt.legend(loc='upper left')
plt.xlim(10, 24)
plt.ylim(15, 28)
plt.axvline(21, c='k')
plt.xlabel(r'$r_{\rm SDSS}$', fontsize=18)
plt.ylabel(r'$SB_{\rm SDSS}$', fontsize=18)


Out[26]:
<matplotlib.text.Text at 0x11e29a290>

The vertical line is the typical SAGA cutoff of r~21

Look for low-SB objects in DECALS


In [27]:
fig, (ax1,ax2) = plt.subplots(2, 1)

starmsk_match = dmatch['type']=='PSF '

ax1.scatter(dmatch['r'][starmsk_match], dmatch['sb_r_0.5'][starmsk_match], lw=0, c='r', alpha=.5, label='star')
ax1.scatter(dmatch['r'][~starmsk_match], dmatch['sb_r_0.5'][~starmsk_match], lw=0, c='b', alpha=.5, label='gal')
ax1.legend(loc='lower right')

starmsk = dcat['type']=='PSF '

plt.scatter(dcat['r'][starmsk], dcat['sb_r_0.5'][starmsk], lw=0, c='r', alpha=.5)
plt.scatter(dcat['r'][~starmsk], dcat['sb_r_0.5'][~starmsk], lw=0, c='b', alpha=.5)

for ax in (ax1, ax2):
    ax.set_xlim(13, 25)
    ax.set_ylim(15, 28)
    ax.axvline(21, c='k')
    ax.axhline(24.5, c='k', ls=':')
    ax.set_xlabel(r'$r_{\rm DECALS}$', fontsize=18)
ax1.set_ylabel(r'$SB_{\rm DECALS}$, in SDSS', fontsize=18)
ax2.set_ylabel(r'$SB_{\rm DECALS}$, all', fontsize=18)


Out[27]:
<matplotlib.text.Text at 0x11e1cee50>

The horizontal line here is to guide the eye: it's a limit above which there's nothing in the SDSS that DECALS says is that low SB (at least to our r<21 cutoff).

But there are some things at very low DECAM SB that aren't showing up in the SDSS X-match... lets see what they are.


In [28]:
to_check = (dcat['r']<21)&(dcat['sb_r_0.5']>24.5)

de_cutout_url = 'http://legacysurvey.org/viewer/jpeg-cutout/?ra={0.ra.deg}&dec={0.dec.deg}&layer=decals-dr3&pixscale=0.1&bands=grz'
sd_cutout_url = 'http://legacysurvey.org/viewer/jpeg-cutout/?ra={0.ra.deg}&dec={0.dec.deg}&layer=sdssco&pixscale=0.1&bands=gri'

tabrows = []
for row in dcat[to_check]:
    sc = SkyCoord(row['ra'], row['dec'], unit=u.deg)
    objstr = '{}_{}<br>RA={:.4f}<br>Dec={:.4f}<br>r={:.2f}<br>sb={:.2f}'.format(row['brickid'], row['objid'], row['ra'], row['dec'], row['r'], row['sb_r_0.5'])
    deimg = '<img src="{}">'.format(de_cutout_url.format(sc))
    sdimg = '<img src="{}">'.format(sd_cutout_url.format(sc))
    tabrows.append('<tr><td>{}</td><td>{}</td><td>{}</td></tr>'.format(objstr, deimg, sdimg))
    
display.HTML("""
<table>

<tr>
<th>obj</th>
<th>DECALS</th>
<th>SDSS</th>
</tr>

{}
</table>
""".format('\n'.join(tabrows)))


/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:1: RuntimeWarning: invalid value encountered in less
  if __name__ == '__main__':
/Users/erik/miniconda3/envs/saga/lib/python2.7/site-packages/ipykernel/__main__.py:1: RuntimeWarning: invalid value encountered in greater
  if __name__ == '__main__':
Out[28]:
obj DECALS SDSS
328371_42
RA=220.8416
Dec=-0.6315
r=17.49
sb=inf
328371_50
RA=220.8146
Dec=-0.6275
r=20.35
sb=25.83
328371_785
RA=220.7923
Dec=-0.5975
r=20.45
sb=25.81
328371_7022
RA=220.8704
Dec=-0.3686
r=10.97
sb=inf

One possibly real object: 328371_785. But it's suspiciously near a bright star...


In [29]:
# this yields [0.5,0.75,1.0,1.5,2.0,3.5,5.0,7.0] arcsec aperture mags
-2.5*np.log10(dcat[dcat['objid']==785]['decam_apflux'][0][2])+22.5


Out[29]:
array([ 26.07063675,  25.19565582,  24.83992004,  23.79156303,
        23.37466431,  22.75118637,  21.96315765,  21.05096054], dtype=float32)

Even being really conservative, it's r>21

Informational: typical extinction in these fields


In [30]:
for scat, bnm in zip(sdss_catalogs, bricknames):
    plt.hist(scat['EXTINCTION_R'], histtype='step', label=bnm)
plt.legend(loc=0)
None


Conclusion

It looks like there are not low surface brightness objects that DECALS sees but SDSS does not.

While the DECALS catalog does show a few such objects, they're almost entirely (maybe entirely entirely?) artifacts from nearby bright stars.

Caveats

  • None of this accounts explicitly for extinction in an attempt to not mix together extinction effects and direct SB effects. But with extinction at ~.1 mag for these fields, it's likely comparable to the flux zero-point offsets i.e., does not affect the main result
  • All of this assumes that 0.5" aperture magnitude provides a good proxy for "central" surface brightness of galaxies. Probably can't do much better than that with Tractor, although conceivably we could do a poor-man's profile fit with some of the available catalog information