In [1]:
import numpy as np
import pandas as pd
from scipy.signal import argrelmax

In [2]:
#Read the CSV file and put it into pandas data frame
df = pd.read_csv('Polymers Plus Analytes_SNV_Reduced_SGSmoothed.csv', index_col=0)

In [3]:
#Take a quick look at the data
df


Out[3]:
200.1318 201.617 203.1022 204.5874 206.0726 207.5577 209.0429 210.5281 212.0133 213.4985 ... 1986.816 1988.301 1989.786 1991.272 1992.757 1994.242 1995.727 1997.212 1998.698 2000.183
A1_C1 1.708752 1.775725 1.861025 1.941629 2.011954 2.046811 2.079291 2.112890 2.114177 2.114298 ... -0.665880 -0.656008 -0.649654 -0.641902 -0.642924 -0.636885 -0.630660 -0.626576 -0.600225 -0.613804
A1_C2 2.004295 2.006743 2.108492 2.173715 2.235133 2.287523 2.328738 2.376845 2.390796 2.400700 ... -0.708420 -0.705648 -0.697500 -0.696426 -0.689204 -0.689529 -0.689332 -0.694238 -0.690780 -0.703149
A1_C3 1.641548 1.719635 1.727123 1.780289 1.824746 1.873068 1.920712 1.953743 1.972046 1.972984 ... -0.440724 -0.441731 -0.436140 -0.433233 -0.429963 -0.419810 -0.415419 -0.413493 -0.422153 -0.422688
A1_Gly1 1.659481 1.716239 1.784938 1.847613 1.904956 1.948734 1.974711 2.006418 2.017988 2.022764 ... -0.786990 -0.788303 -0.793475 -0.792389 -0.792823 -0.793748 -0.801304 -0.803293 -0.822496 -0.826604
A1_Gly2 1.167688 1.225181 1.272517 1.320838 1.362455 1.399500 1.423343 1.449302 1.459464 1.450147 ... -1.018188 -1.009754 -1.005993 -1.001317 -1.002929 -1.002543 -1.013830 -1.013618 -1.043767 -1.012335
A1_Gly3 1.667580 1.727449 1.798728 1.832720 1.872614 1.895185 1.913762 1.931283 1.953513 1.951084 ... -1.052663 -1.058615 -1.056988 -1.057154 -1.060322 -1.060348 -1.056159 -1.058370 -1.055079 -1.065565
A1_HC1 1.213005 1.246412 1.294557 1.350900 1.414119 1.480618 1.557076 1.647480 1.727396 1.797848 ... -0.651136 -0.651901 -0.649899 -0.651513 -0.654322 -0.656268 -0.657652 -0.659916 -0.659924 -0.662043
A1_HC2 1.214321 1.250366 1.306477 1.366602 1.439891 1.518616 1.600351 1.688306 1.767251 1.833345 ... -0.669614 -0.669527 -0.670756 -0.671608 -0.673269 -0.674685 -0.675474 -0.675245 -0.672897 -0.681195
A1_HC3 1.144966 1.175299 1.241173 1.298419 1.366901 1.440046 1.517917 1.606259 1.688764 1.761680 ... -0.708548 -0.709161 -0.707377 -0.707572 -0.709099 -0.710288 -0.714087 -0.714551 -0.722282 -0.711487
A1_Ile1 2.080212 2.152591 2.180875 2.231400 2.285243 2.349542 2.394868 2.431752 2.461441 2.454932 ... -0.606310 -0.601787 -0.596811 -0.591758 -0.591364 -0.595460 -0.595208 -0.585713 -0.576605 -0.549335
A1_Ile2 2.497904 2.588654 2.629728 2.693445 2.737390 2.783184 2.818947 2.844160 2.851661 2.842934 ... -0.744714 -0.747692 -0.736922 -0.736229 -0.732720 -0.727792 -0.723185 -0.728081 -0.752789 -0.709134
A1_Ile3 1.843773 1.934465 1.953264 2.011428 2.056509 2.104142 2.151395 2.205697 2.227469 2.226187 ... -0.717272 -0.717951 -0.703682 -0.694608 -0.692060 -0.684847 -0.675930 -0.676181 -0.662299 -0.662334
A1_Phe1 1.213001 1.227603 1.308443 1.364954 1.419122 1.456064 1.493865 1.526027 1.546854 1.554699 ... -0.768946 -0.765989 -0.764601 -0.764101 -0.765451 -0.766235 -0.766378 -0.766339 -0.773450 -0.766635
A1_Phe2 1.428163 1.459969 1.539671 1.598359 1.651830 1.699517 1.735192 1.757098 1.778582 1.799640 ... -0.668539 -0.673312 -0.674053 -0.676834 -0.674994 -0.668920 -0.666232 -0.658654 -0.661206 -0.650613
A1_Phe3 1.563812 1.577121 1.645150 1.701708 1.759864 1.807987 1.856362 1.896501 1.917010 1.925464 ... -0.694087 -0.698959 -0.692347 -0.691738 -0.688455 -0.685409 -0.678736 -0.677610 -0.676467 -0.668454
A1_PP11 1.867184 1.822545 1.852295 1.855265 1.855054 1.881746 1.866032 1.863640 1.842072 1.836790 ... -0.915777 -0.900929 -0.890800 -0.894191 -0.898905 -0.905990 -0.923949 -0.930902 -0.939776 -0.921416
A1_PP12 2.822372 2.800852 2.812671 2.812050 2.812125 2.803801 2.804097 2.784388 2.759950 2.743271 ... -0.707583 -0.694670 -0.705081 -0.713193 -0.725592 -0.711798 -0.716706 -0.706635 -0.697382 -0.701405
A1_PP13 1.749527 1.770681 1.784955 1.804455 1.810886 1.809557 1.794373 1.792642 1.775503 1.767651 ... -0.957337 -0.947072 -0.937875 -0.924050 -0.921651 -0.920061 -0.924609 -0.928760 -0.946713 -0.932987
A1_SA1 1.417198 1.530497 1.589156 1.663126 1.706146 1.741557 1.774377 1.796937 1.811870 1.833364 ... -0.838260 -0.836762 -0.843309 -0.847092 -0.852731 -0.858477 -0.857943 -0.850889 -0.838261 -0.840517
A1_SA2 1.489096 1.634001 1.629703 1.687616 1.722893 1.766239 1.819158 1.856762 1.853006 1.853736 ... -0.859056 -0.863588 -0.861000 -0.855377 -0.858290 -0.855009 -0.853463 -0.858522 -0.863943 -0.881616
A1_SA3 1.688645 1.737642 1.822135 1.876374 1.927970 1.961163 1.995483 2.010958 2.028715 2.028709 ... -0.724410 -0.732390 -0.730798 -0.729488 -0.726129 -0.724036 -0.715908 -0.717865 -0.717477 -0.717128
A2_C1 0.935472 0.935841 0.908567 0.899299 0.888060 0.881056 0.877037 0.883940 0.879433 0.875926 ... -0.382418 -0.378680 -0.372909 -0.369781 -0.371126 -0.369199 -0.364311 -0.361594 -0.352687 -0.351891
A2_C2 1.158512 1.144798 1.121715 1.105654 1.093350 1.085824 1.081947 1.089141 1.091322 1.092816 ... -0.377883 -0.377993 -0.372845 -0.368990 -0.366301 -0.364235 -0.357963 -0.357411 -0.346926 -0.355019
A2_C3 0.985111 0.967353 0.945907 0.932657 0.918858 0.910982 0.903130 0.905938 0.904751 0.906540 ... -0.368778 -0.366620 -0.361434 -0.358179 -0.355562 -0.352399 -0.350112 -0.350852 -0.348430 -0.350412
A2_Gly1 -0.653039 -0.644274 -0.660734 -0.675299 -0.684295 -0.693129 -0.699082 -0.705805 -0.700840 -0.701705 ... -0.940429 -0.947496 -0.948869 -0.950410 -0.954629 -0.956604 -0.955229 -0.962084 -0.954225 -0.977703
A2_Gly2 0.071428 -0.001457 0.005733 -0.022198 -0.035514 -0.053115 -0.075821 -0.082115 -0.089870 -0.093132 ... -1.079406 -1.074151 -1.077680 -1.076815 -1.076246 -1.086893 -1.095661 -1.099941 -1.089136 -1.103185
A2_Gly3 -0.551143 -0.530746 -0.561035 -0.564277 -0.572445 -0.573582 -0.572611 -0.567570 -0.572997 -0.576791 ... -1.083314 -1.088158 -1.086930 -1.091265 -1.093413 -1.101263 -1.102511 -1.105650 -1.104230 -1.109212
A2_HC1 0.987652 0.971882 0.971590 0.959360 0.952873 0.946721 0.936687 0.939264 0.954750 0.955870 ... -1.932934 -1.937400 -1.947508 -1.952767 -1.959790 -1.965035 -1.972859 -1.974715 -1.988982 -1.978283
A2_HC2 0.998670 0.963005 0.968491 0.954208 0.949328 0.940720 0.930799 0.936607 0.948770 0.947992 ... -2.105510 -2.112495 -2.121931 -2.127573 -2.132590 -2.140614 -2.148865 -2.152174 -2.163699 -2.157480
A2_HC3 0.992058 0.935908 0.947432 0.931229 0.928147 0.917086 0.907468 0.916603 0.925011 0.922230 ... -2.250275 -2.259809 -2.268358 -2.274303 -2.277097 -2.287926 -2.296480 -2.301272 -2.309672 -2.308327
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
PMM_Phe1 0.637314 0.640142 0.624634 0.619588 0.615252 0.613673 0.613741 0.611704 0.613042 0.611226 ... -0.706864 -0.705516 -0.705839 -0.705287 -0.704553 -0.704950 -0.705582 -0.705212 -0.707699 -0.703349
PMM_Phe2 0.584885 0.592174 0.583540 0.580178 0.576687 0.568505 0.563385 0.566076 0.564192 0.562503 ... -0.709305 -0.710465 -0.710345 -0.709501 -0.709551 -0.708851 -0.706896 -0.706787 -0.704610 -0.709909
PMM_Phe3 0.905588 0.905742 0.897316 0.891288 0.885952 0.881950 0.877373 0.872003 0.870598 0.865764 ... -0.698644 -0.698240 -0.698781 -0.697496 -0.696784 -0.696348 -0.696175 -0.693508 -0.695660 -0.690233
PMM_PP11 0.815977 0.817445 0.805127 0.798517 0.795372 0.794588 0.789264 0.785491 0.783747 0.776654 ... -0.704295 -0.701602 -0.706570 -0.707906 -0.703058 -0.704698 -0.707306 -0.699635 -0.709885 -0.687870
PMM_PP12 0.517483 0.537008 0.556099 0.570079 0.572403 0.570857 0.563720 0.563614 0.559505 0.562267 ... -0.741982 -0.740173 -0.736041 -0.734968 -0.732043 -0.725712 -0.724010 -0.723341 -0.721369 -0.720603
PMM_PP13 0.587443 0.592637 0.595460 0.598090 0.599156 0.597968 0.594729 0.594277 0.591078 0.586304 ... -0.764151 -0.762880 -0.762638 -0.763273 -0.760839 -0.760261 -0.760703 -0.757790 -0.760787 -0.750308
PMM_SA1 1.047520 1.051150 1.042282 1.035403 1.029662 1.028837 1.023426 1.016776 1.012471 1.005003 ... -0.702037 -0.701128 -0.701802 -0.700713 -0.700323 -0.698723 -0.698580 -0.697397 -0.699710 -0.695959
PMM_SA2 1.021809 1.023659 1.011171 1.003713 0.996024 0.987316 0.982904 0.979772 0.977410 0.971076 ... -0.709567 -0.707675 -0.706016 -0.705607 -0.703106 -0.701051 -0.701089 -0.699318 -0.700454 -0.693500
PMM_SA3 1.052146 1.051640 1.045874 1.039358 1.031724 1.020829 1.017340 1.011720 1.005107 0.998165 ... -0.698674 -0.698771 -0.699094 -0.699773 -0.698065 -0.697214 -0.693891 -0.693740 -0.685805 -0.698983
PVA_C1 1.242274 1.249807 1.175229 1.137997 1.094611 1.073810 1.050117 1.046437 1.029770 1.009965 ... -1.201391 -1.201627 -1.197553 -1.198377 -1.198825 -1.197255 -1.185654 -1.192506 -1.156314 -1.224955
PVA_C2 1.235631 1.209775 1.134774 1.092499 1.054167 1.022297 0.991339 0.970859 0.966613 0.942636 ... -1.184168 -1.172218 -1.174408 -1.174938 -1.164382 -1.154692 -1.160359 -1.157490 -1.175720 -1.149859
PVA_C3 0.963854 0.924616 0.883383 0.846688 0.802584 0.767088 0.739365 0.728153 0.698506 0.691280 ... -1.127157 -1.128212 -1.113738 -1.109259 -1.114493 -1.108826 -1.111572 -1.116705 -1.134336 -1.131070
PVA_Gly1 -0.607385 -0.620992 -0.612369 -0.613153 -0.612634 -0.616694 -0.618716 -0.617665 -0.619355 -0.621616 ... -1.006219 -1.007851 -1.013633 -1.016920 -1.020334 -1.022367 -1.023174 -1.022556 -1.019726 -1.024835
PVA_Gly2 -0.601814 -0.595968 -0.604376 -0.602021 -0.609891 -0.620202 -0.617790 -0.622033 -0.630063 -0.630754 ... -1.003927 -1.004456 -1.007720 -1.010002 -1.014490 -1.016692 -1.021017 -1.023066 -1.023837 -1.027022
PVA_Gly3 -0.452498 -0.462984 -0.473169 -0.482157 -0.485942 -0.489088 -0.489010 -0.486775 -0.482844 -0.482932 ... -0.995383 -0.997011 -0.994097 -0.997257 -0.996517 -0.997953 -0.999410 -1.004793 -1.006402 -1.006947
PVA_HC1 1.464512 1.434199 1.408893 1.380138 1.343957 1.295286 1.248822 1.233347 1.187138 1.151964 ... -0.991746 -0.988324 -0.976171 -0.976306 -0.972443 -0.980980 -0.980983 -0.994746 -0.991319 -1.021694
PVA_HC2 1.348945 1.318255 1.291623 1.270819 1.247594 1.206341 1.163339 1.152631 1.111569 1.060652 ... -1.045845 -1.036696 -1.043121 -1.036662 -1.036230 -1.039325 -1.034483 -1.035646 -1.003085 -1.039469
PVA_HC3 1.885064 1.833207 1.847309 1.812597 1.794618 1.753924 1.712049 1.695128 1.673506 1.627103 ... -0.836395 -0.842685 -0.835892 -0.839715 -0.850595 -0.875873 -0.871877 -0.881899 -0.855438 -0.890074
PVA_Ile1 -0.375345 -0.375846 -0.384960 -0.387568 -0.395991 -0.397288 -0.401640 -0.403880 -0.411983 -0.417794 ... -1.136829 -1.145010 -1.145609 -1.144196 -1.144597 -1.149959 -1.142506 -1.138764 -1.127280 -1.115665
PVA_Ile2 -0.314365 -0.341121 -0.333439 -0.338621 -0.337549 -0.332423 -0.332970 -0.338416 -0.348358 -0.362183 ... -1.102612 -1.110711 -1.105837 -1.111824 -1.116344 -1.118632 -1.118101 -1.128548 -1.122982 -1.141953
PVA_Ile3 -0.385842 -0.350116 -0.364217 -0.362592 -0.371954 -0.374341 -0.375951 -0.385336 -0.392176 -0.396795 ... -1.122817 -1.116168 -1.118268 -1.127309 -1.125500 -1.124147 -1.129069 -1.131169 -1.133502 -1.141346
PVA_Phe1 -0.272667 -0.269867 -0.264444 -0.229406 -0.180450 -0.148743 -0.142760 -0.124634 -0.136315 -0.150088 ... -1.416184 -1.411030 -1.397035 -1.382608 -1.389395 -1.378877 -1.355233 -1.312524 -1.271868 -1.194295
PVA_Phe2 2.363550 2.207461 2.317818 2.288079 2.271639 2.225172 2.195966 2.159052 2.140546 2.121082 ... -1.298287 -1.302106 -1.303517 -1.298750 -1.297036 -1.298075 -1.294786 -1.288387 -1.274496 -1.307482
PVA_Phe3 0.273473 0.234172 0.247412 0.246188 0.284616 0.301562 0.289314 0.297310 0.296798 0.244532 ... -1.225612 -1.213098 -1.215280 -1.214623 -1.194341 -1.175907 -1.180645 -1.169926 -1.157723 -1.193575
PVA_PP11 2.238753 2.080170 2.117835 2.103226 2.100747 2.073809 2.061385 2.065248 2.074209 2.062846 ... -0.492153 -0.486639 -0.463717 -0.457328 -0.435389 -0.430261 -0.407883 -0.400925 -0.382799 -0.398639
PVA_PP12 2.218166 2.295647 2.221981 2.226949 2.215553 2.228912 2.246386 2.257493 2.266332 2.258836 ... -0.527981 -0.508188 -0.489538 -0.478636 -0.486346 -0.494609 -0.484663 -0.458805 -0.383655 -0.350781
PVA_PP13 2.471706 2.403227 2.361165 2.345810 2.328945 2.311124 2.309179 2.320247 2.313693 2.298704 ... -0.436659 -0.440341 -0.434676 -0.447300 -0.454170 -0.460779 -0.461049 -0.456171 -0.434816 -0.418187
PVA_SA1 1.323295 0.683266 0.284972 -0.128811 -0.375680 -0.639727 -0.651162 -0.662526 -0.647574 -0.727282 ... -1.074545 -0.983329 -1.001665 -0.963746 -1.005820 -0.836067 -0.721222 -0.629321 -0.217148 -0.806796
PVA_SA2 -0.195450 -0.272446 -0.556901 -0.607554 -0.572610 -0.521734 -0.343334 -0.146715 0.067028 0.196839 ... -0.643898 -0.552079 -0.359430 -0.364149 -0.296613 -0.242602 -0.310640 -0.463915 -0.650311 -0.620332
PVA_SA3 0.456641 0.118976 -0.049270 -0.228825 -0.347664 -0.541209 -0.503154 -0.531126 -0.472973 -0.414213 ... -0.771920 -0.708351 -0.739497 -0.771137 -0.782259 -0.676197 -0.595573 -0.555224 -0.198120 -0.696176

270 rows × 1213 columns


In [4]:
# How many points on each side to use for the comparison to consider comparator(n, n+x) to be True.
neighborhood = 5
for neighborhood in range(1,10):
    local_maxima = []
    for i in range(df.shape[0]):
        row = np.array(df.iloc[[i]])
        a = argrelmax(row[0], order = neighborhood)
        local_maxima.append(len(a[0]))
    print("The average of local maxima with neighborsize of: %d is %.3f"%(neighborhood,np.mean(local_maxima)))


The average of local maxima with neighborsize of: 1 is 106.826
The average of local maxima with neighborsize of: 2 is 64.559
The average of local maxima with neighborsize of: 3 is 50.033
The average of local maxima with neighborsize of: 4 is 44.026
The average of local maxima with neighborsize of: 5 is 40.259
The average of local maxima with neighborsize of: 6 is 35.244
The average of local maxima with neighborsize of: 7 is 31.648
The average of local maxima with neighborsize of: 8 is 29.152
The average of local maxima with neighborsize of: 9 is 27.030

In [ ]: