In [ ]:
import sys
import glob
import re
import fnmatch
import math
import os
from os import listdir
from os.path import join, isfile, basename
import itertools
import numpy as np
from numpy import float32, int32, uint8, dtype, genfromtxt
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import scipy
import pandas as pd
import colorsys
import template_common as tc
In [ ]:
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:90% !important; }</style>"))
In [ ]:
base_dir='/nrs/saalfeld/john/projects/flyChemStainAtlas/all_evals/distanceStatsWarpNorm'
dest_dir = '/groups/saalfeld/home/bogovicj/pubDrafts/grpDrosTemplate/grpDrosTemplate/tables'
fig_dir = '/groups/saalfeld/home/bogovicj/pubDrafts/grpDrosTemplate/grpDrosTemplate/figs'
alg_list = ['antsRegDog', 'antsRegOwl', 'antsRegYang', 'cmtkCOG', 'cmtkCow', 'cmtkHideo']
# template_list = [ 'JFRC2013_lo', 'JFRCtemplate2010', 'TeforBrain_f', 'F-antsFlip_lo', 'F-cmtkFlip_lof', 'FCWB']
template_list = [ 'JFRC2013_lo', 'JFRCtemplate2010', 'TeforBrain_f', 'F-antsFlip_lo', 'FCWB']
pd.options.display.float_format = '{:,.2f}'.format
In [ ]:
# Load everything
# os.listdir( base_dir )
df = None
# for tmp in template_list:
for f in glob.glob( ''.join([base_dir,'/*.csv']) ):
# f = glob.glob( ''.join([base_dir,'/',tmp,'.csv']) )
print( f )
this_df = pd.read_csv( f, header=[0,1], index_col=0 )
if df is None:
df = this_df
else:
df = df.append( this_df )
tc.clean_cols( df )
df['std'] = df.apply( lambda x: math.sqrt(x['var']), axis=1)
df['gam_std'] = df.apply( lambda x: math.sqrt(x['gam_var']), axis=1)
df['ray_std'] = df.apply( lambda x: math.sqrt(x['ray_var']), axis=1)
df.reset_index( drop=True )
In [ ]:
tmask = df.apply( lambda x: (x['TEMPLATE'] in template_list ), axis=1)
df = df.loc[tmask]
df_ed = df.loc[ (df.ALG != 'ALL')]
df_ed['TEMPLATE'] = df_ed.apply(lambda x: tc.template_name(x['TEMPLATE']), axis=1)
df_ed['ALG'] = df_ed.apply(lambda x: tc.alg_name(x['ALG']), axis=1)
# df_ed['TA'] = df_ed.apply(lambda x: ''.join([x['TEMPLATE'],':',x['ALG']]), axis=1)
In [ ]:
# df_ed[[['mean','median','std']]]
# df_ed['ALG'].unique()
df_ed.head()
In [ ]:
# print( df_writeme.index)
# mi = pd.MultiIndex.from_product([df_l.TEMPLATE.unique(), df_l.ALG.unique()], names=['Template','Algorithm'])
# mi
# df_writeme.set_index( mi )
# df_writeme.set_index( ['TEMPLATE','ALG'])
# print( df_writeme.set_index( ['Template','Algorithm']).to_latex( multirow='True'))
# print( df_writeme.to_latex())
In [ ]:
template_order = ['JFRC2010','JFRC2013','JRC2018','FCWB','Tefor']
alg_order = ['ANTs A','ANTs B','ANTs C','CMTK A','CMTK B','CMTK C']
for label in tc.labels:
print( label )
df_l = df_ed[ df_ed.LABEL == label ]
# df_writeme = df_l[['TEMPLATE','ALG','mean','std','p10','median','p90','count']].sort_values(by=['TEMPLATE','ALG'])
df_writeme = df_l[['TEMPLATE','ALG','mean','std','p10','median','p90','count']]
df_writeme.columns = ['Template','Algorithm','Mean','Std dev','10th perc','median','90th perc','N']
df_writeme = df_writeme.set_index( ['Template','Algorithm'])
# df_writeme
# df_writeme.reindex(labels=template_order, axis='index')
# df_writeme.loc[['JFRC2010','JFRC2013','JRC2018''FCWB','Tefor']]
# print(df_writeme)
# print( '\caption{{ {} }}'.format( tc.get_label_string( label ).replace('_','\_')) )
f = '/nrs/saalfeld/john/projects/flyChemStainAtlas/all_evals/distanceStatsWarpNorm/tables/label_{}.tex'.format(label)
with open( f, 'w') as tex_file:
print( '\\begin{table}', file=tex_file )
print( df_writeme.to_latex( multirow='True'), file=tex_file)
print( '\caption{{ {} }}'.format( tc.get_label_string( label ).replace('_','\_')), file=tex_file )
print( '\caption{{ {} }}'.format( tc.get_label_string( label ).replace('_','\_')) )
print( '\end{table}', file=tex_file )
# print( ' ' )
# break